Multifield Inflation After Planck: Isocurvature Modes From

Total Page:16

File Type:pdf, Size:1020Kb

Multifield Inflation After Planck: Isocurvature Modes From Multifield Inflation after Planck: Isocurvature Modes from Nonminimal Couplings Katelin Schutz, Evangelos I. Sfakianakis and David I. Kaiser∗ Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA (Dated: March 19, 2014) Recent measurements by the Planck experiment of the power spectrum of temperature anisotropies in the cosmic microwave background radiation (CMB) reveal a deficit of power in low multipoles compared to the predictions from best-fit ΛCDM cosmology. If the low-` anomaly persists after additional observations and analysis, it might be explained by the presence of primordial isocurvature perturbations in addition to the usual adiabatic spectrum, and hence may provide the first robust evidence that early-universe inflation involved more than one scalar field. In this paper we explore the production of isocurvature perturbations in nonminimally coupled two-field inflation. We find that this class of models readily produces enough power in the isocurvature modes to account for the Planck low-` anomaly, while also providing excellent agreement with the other Planck results. PACS numbers: 04.62+v; 98.80.Cq. Published in Physical Review D 89: 064044 (2014) I. INTRODUCTION field models, including the production and amplification of isocurvature modes during inflation [12{19]. Inflation is a leading cosmological paradigm for the Unlike adiabatic perturbations, which are fluctuations early universe, consistent with the myriad of observable in the energy density, isocurvature perturbations arise quantities that have been measured in the era of preci- from spatially varying fluctuations in the local equa- sion cosmology [1{3]. However, a persistent challenge has tion of state, or from relative velocities between vari- been to reconcile successful inflationary scenarios with ous species of matter. When isocurvature modes are well-motivated models of high-energy physics. Realistic produced primordially and stretched beyond the Hub- models of high-energy physics, such as those inspired by ble radius, causality prevents the redistribution of en- supersymmetry or string theory, routinely include mul- ergy density on super-horizon scales. When the pertur- tiple scalar fields at high energies [4]. Generically, each bations later cross back within the Hubble radius, isocur- scalar field should include a nonminimal coupling to the vature modes create pressure gradients that can push en- spacetime Ricci curvature scalar, since nonminimal cou- ergy density around, sourcing curvature perturbations plings arise as renormalization counterterms when quan- that contribute to large-scale anisotropies in the cos- tizing scalar fields in curved spacetime [5{8]. The non- mic microwave background radiation (CMB). (See, e.g., minimal couplings typically increase with energy-scale [11, 20].) under renormalization-group flow [7], and hence should The recent measurements of CMB anisotropies by be large at the energy-scales of interest for inflation. We Planck favor a combination of adiabatic and isocurvature therefore study a class of inflationary models that in- perturbations in order to improve the fit at low multi- cludes multiple scalar fields with large nonminimal cou- poles (` ∼ 20 − 40) compared to the predictions from the plings. simple, best-fit ΛCDM model in which primordial per- It is well known that the predicted perturbation spec- turbations are exclusively adiabatic. The best fit to the tra from single-field models with nonminimal couplings present data arises from models with a modest contribu- produce a close fit to observations. Following conformal tion from isocurvature modes, whose primordial power transformation to the Einstein frame, in which the gravi- spectrum PS (k) is either scale-invariant or slightly blue- tational portion of the action assumes canonical Einstein- tilted, while the dominant adiabatic contribution, PR(k), Hilbert form, the effective potential for the scalar field is is slightly red-tilted [11]. The low-` anomaly thus might stretched by the conformal factor to be concave rather arXiv:1310.8285v2 [astro-ph.CO] 18 Mar 2014 provide the first robust empirical evidence that early- than convex [9, 10], precisely the form of inflationary po- universe inflation involved more than one scalar field. tential most favored by the latest results from the Planck Well-known multifield models that produce isocurva- experiment [11]. ture perturbations, such as axion and curvaton models, The most pronounced difference between multifield in- are constrained by the Planck results and do not im- flation and single-field inflation is the presence of more prove the fit compared to the purely adiabatic ΛCDM than one type of primordial quantum fluctuation that can model [11]. As we demonstrate here, on the other hand, evolve and grow. The added degrees of freedom may lead the general class of multifield models with nonminimal to observable departures from the predictions of single- couplings can readily produce isocurvature perturbations of the sort that could account for the low-` anomaly in the Planck data, while also producing excellent agree- ment with the other spectral observables measured or ∗ [email protected], [email protected], [email protected] constrained by the Planck results, such as the spectral 2 index ns, the tensor-to-scalar ratio r, the running of the A. Einstein-Frame Potential spectral index α, and the amplitude of primordial non- Gaussianity fNL. We perform a conformal transformation to the Einstein Nonminimal couplings in multifield models induce a frame by rescaling the spacetime metric tensor, curved field-space manifold in the Einstein frame [21], 2 and hence one must employ a covariant formalism for g~µν (x) = Ω (x) gµν (x); (3) this class of models. Here we make use of the covariant formalism developed in [22], which builds on pioneering where the conformal factor Ω2(x) is related to the non- work in [13, 18]. In Section II we review the most rele- minimal coupling function via the relation vant features of our class of models, including the formal 2 machinery required to study the evolution of primordial 2 I Ω (x) = 2 f φ (x) : (4) isocurvature perturbations. In Section III we focus on a Mpl regime of parameter space that is promising in the light of the Planck data, and for which analytic approxmations This transformation yields the action in the Einstein are both tractable and in close agreement with numerical frame, simulations. In Section IV we compare the predictions Z "M 2 # from this class of models to the recent Planck findings. 4 p pl 1 µν I J I S = d x −g R − GIJ g @µφ @ν φ − V (φ ) ; Concluding remarks follow in Section V. 2 2 (5) where all the terms sans tilde are stretched by the confor- II. MODEL mal factor. For instance, the conformal transformation to the Einstein frame induces a nontrivial field-space metric [21] We consider two nonminimally coupled scalar fields φI fφ, χg. We work in 3+1 spacetime dimensions with 2 Mpl 3 the spacetime metric signature (−; +; +; +). We ex- GIJ = δIJ + f;I f;J ; (6) 2f f press our results in terms of the reduced Planck mass, −1=2 18 Mpl ≡ (8πG) = 2.43 × 10 GeV. Greek letters and the potential is also stretched so that it becomes (µ, ν) denote spacetime 4-vector indices, lower-case Ro- man letters (i, j) denote spacetime 3-vector indices, and M 4 V (φ, χ) = pl V~ (φ, χ) capital Roman letters (I, J) denote field-space indices. (2f)2 We indicate Jordan-frame quantities with a tilde, while (7) M 4 λ g λ Einstein-frame quantities will be sans tilde. Subscripted = pl φ φ4 + φ2χ2 + χ χ4 : commas indicate ordinary partial derivatives and sub- (2f)2 4 2 4 scripted semicolons denote covariant derivatives with re- spect to the spacetime coordinates. The form of the nonminimal coupling function is set by the requirements of renormalization [5, 6], We begin with the action in the Jordan frame, in which the fields’ nonminimal couplings remain explicit: 1 2 2 2 f(φ, χ) = [M + ξφφ + ξχχ ]; (8) Z 2 4 p I 1 µν I J I S~ = d x −g~ f(φ )R~ − G~IJ g~ @µφ @ν φ − V~ (φ ) ; 2 where ξφ and ξχ are dimensionless couplings and M is (1) some mass scale such that when the fields settle into their 2 where R~ is the spacetime Ricci scalar, f(φI ) is the non- vacuum expectation values, f ! Mpl=2. Here we assume minimal coupling function, and G~ is the Jordan-frame that any nonzero vacuum expectation values for φ and IJ χ are much smaller than the Planck scale, and hence we field space metric. We set G~IJ = δIJ , which gives canon- ical kinetic terms in the Jordan frame. We take the may take M = Mpl. Jordan-frame potential, V~ (φI ), to have a generic, renor- The conformal stretching of the potential in the Ein- malizable polynomial form with an interaction term: stein frame makes it concave and asymptotically flat along either direction in field space, I = φ, χ, λφ g λχ " !# V~ (φ, χ) = φ4 + φ2χ2 + χ4; (2) M 4 λ M 2 4 2 4 I pl I pl V (φ ) ! 2 1 + O I 2 (9) 4 ξI ξJ (φ ) with dimensionless coupling constants λI and g. As dis- cussed in [22], the inflationary dynamics in this class of (no sum on I). For non-symmetric couplings, in which models are relatively insensitive to the presence of mass λφ 6= λχ and/or ξφ 6= ξχ, the potential in the Einstein terms, m2 φ2 or m2 χ2, for realistic values of the masses frame will develop ridges and valleys, as shown in Fig. 1. φ χ p that satisfy mφ; mχ Mpl. Hence we will neglect such Crucially, V > 0 even in the valleys (for g > − λφλχ), terms here. and hence the system will inflate (albeit at varying rates) 3 1.0 s n 0.5 0.0 0.01 0.1 1 10 100 k FIG.
Recommended publications
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Permalink https://escholarship.org/uc/item/2sv8b4x5 Author Mcgehee Jr., Robert Stephen Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Hitoshi Murayama, Chair Professor Alexander Givental Professor Yasunori Nomura Summer 2020 Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Copyright 2020 by Robert Stephen Mcgehee Jr. 1 Abstract Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. Doctor of Philosophy in Physics University of California, Berkeley Professor Hitoshi Murayama, Chair An abundance of evidence from diverse cosmological times and scales demonstrates that 85% of the matter in the Universe is comprised of nonluminous, non-baryonic dark matter. Discovering its fundamental nature has become one of the greatest outstanding problems in modern science. Other persistent problems in physics have lingered for decades, among them the electroweak hierarchy and origin of the baryon asymmetry. Little is known about the solutions to these problems except that they must lie beyond the Standard Model. The first half of this dissertation explores dark matter models motivated by their solution to not only the dark matter conundrum but other issues such as electroweak naturalness and baryon asymmetry.
    [Show full text]
  • Table of Contents (Print)
    NEWSPAPER The PandaX-II liquid xenon detector used for dark matter searches at the China Jin-Ping Underground Laboratory. Selected for an Editors’ Suggestion. [Andi Tan et al. (PandaX-II Collaboration), Phys. Rev. Lett. 117, 121303 (2016)] PHYSICAL REVIEW LETTERS Contents Articles published 10 September–16 September 2016 VOLUME 117, NUMBER 12 16 September 2016 General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. Direct Measurement of the Density Matrix of a Quantum System .................................................................... 120401 G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen Accessing Many-Body Localized States through the Generalized Gibbs Ensemble ........................................................... 120402 Stephen Inglis and Lode Pollet Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems ................................................................................................................................................................. 120403 Ying Li Quasiprobability Representations of Quantum Mechanics with Minimal Negativity .......................................................... 120404 Huangjun Zhu Grover Search and the No-Signaling Principle ..................................................................................................................... 120501 Ning Bao, Adam Bouland, and Stephen P. Jordan Gravitation and Astrophysics Observation of Noise Correlated by
    [Show full text]
  • Constraining a Thin Dark Matter Disk with Gaia
    LCTP 17-03, MIT-CTP 4957 Constraining a Thin Dark Matter Disk with Gaia Katelin Schutz,1, ∗ Tongyan Lin,1, 2, 3 Benjamin R. Safdi,4 and Chih-Liang Wu5 1Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 2Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3Department of Physics, University of California, San Diego, CA 92093, USA 4Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109 5Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 If a component of the dark matter has dissipative interactions, it could collapse to form a thin dark disk in our Galaxy that is coplanar with the baryonic disk. It has been suggested that dark disks could explain a variety of observed phenomena, including periodic comet impacts. Using the first data release from the Gaia space observatory, we search for a dark disk via its effect on stellar kinematics in the Milky Way. Our new limits disfavor the presence of a thin dark matter disk, and we present updated measurements on the total matter density in the Solar neighborhood. Introduction.| The particle nature of dark matter height of hDD 10 pc are required to meaningfully im- (DM) remains a mystery in spite of its large abundance pact the above∼ phenomena.1 in our Universe. Moreover, some of the simplest DM Here we present a comprehensive search for a local DD, models are becoming increasingly untenable. Taken to- using tracer stars as a probe of the local gravitational po- gether, the wide variety of null searches for particle DM tential.
    [Show full text]
  • Cora Dvorkin Curriculum Vitae
    Cora Dvorkin 1 Cora Dvorkin Curriculum Vitae Contact Address: Department of Physics, Harvard University 17 Oxford Street, Lyman 334 Cambridge, MA 02138 Telephone (773) 915-3857 Email: [email protected] Website: http : ==dvorkin:physics:harvard:edu=Home:html https : ==www:physics:harvard:edu=people=facpages=dvorkin Citizenship: Argentina EDUCATION July, 2011: Doctor of Philosophy in Physics University of Chicago Dissertation: \On the Imprints of Inflation in the Cosmic Microwave Background" Advisor: Prof. Wayne Hu September, 2006: Master of Science in Physics University of Chicago June, 2005: Diploma in Physics (M.S. equivalent) University of Buenos Aires (Summa cum laude) RESEARCH INTERESTS I am a theoretical cosmologist. My areas of interest are: the nature of dark matter, neutrinos and other light relics, and the physics of the early universe. I use observables such as the Cosmic Microwave Background (CMB), the large-scale structure of the universe, 21-cm radiation, and strong gravitational lensing to shed light on these questions. POSITIONS HELD July, 2019 - present Department of Physics, Harvard University Associate Professor July, 2015 - June, 2019 Department of Physics, Harvard University Assistant Professor 2014-2015 ITC - Center for Astrophysics, Harvard University Hubble Fellow and ITC Fellow 2011-2014 Institute for Advanced Study (Princeton), School of Natural Sciences Postdoctoral Member 2006-2011 University of Chicago, Department of Physics Research Assistant at Kavli Institute for Cosmological Physics (KICP) 2004-2005
    [Show full text]
  • Tevpa 2017.Pdf
    東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ TeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ sub-GeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 +Yonit Hochberg, Eric Kuflik matter Ωm changes the overall heights of the peaks matter Ωm changes the overall heights of the peaks nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM DM SM “weak” coupling correct abundance “weak” mass scale Miracle2 nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ “weak” coupling correct abundance “weak” mass scale Miracle2 sociology • Particle physicists used to think sociology • Particle physicists used to think • need to solve problems with the SM sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark
    [Show full text]
  • Signature Redacted Thesis Supervisor Certified By
    MASSACHUSETTS INSTMITE A Tale of Two Particles OF TECHNOLOGY by AU6 15 2014 Katelin Schutz LIBRARIES Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 @ Katelin Schutz, MMXIV. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Author .. .................................. Department of Physics Signature redacted May 9, 2014 Certified by. ........................... A. David Kaiser Germeshausen Professor of the History of Science Senior Lecturer, Department of Physics Signature redacted Thesis Supervisor Certified by.. ............................. Tracy Slatyer Assistant Professor of Physics Signature redacted Thesis Supervisor Accepted by.. ..................... Nergis Mavalvala Senior Thesis Coordinator A Tale of Two Particles by Katelin Schutz Submitted to the Department of Physics on May 9, 2014, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract It was the earliest of times, it was the latest of times, it was the age of inflation, it was the age of collapse, it was the epoch of perturbation growth, it was the epoch of perturbation damping, it was the CMB of light, it was the dwarf galaxy of dark- ness, it was the largest of cosmic scales, it was the smallest of Milky Way subhalos, we had multiple nonminimally coupled inflatons before us, we had inelastically self- interacting dark matter before us, we were all going direct to the Planck scale, we were all going direct the other way.
    [Show full text]
  • Electronic Newsletter December 15, 2016
    Electronic Newsletter December 15, 2016 In this issue • April Meeting (in January) Washington, DC • DAP Nominations • APS Fellows from DAP • 2017 Bethe Prize • April Meeting Overview • DAP Awards Ceremony • Public Lecture and Plenary Session Highlights • DAP Session Schedule • Focus Sessions sponsored by the DAP • Invited Session Highlights APS DAP Officers 2016–2017: Finalize your plans now to attend the April 2017 meeting held Chair: Julie McEnery this year in January in Washington, DC. A number of plenary and invited sessions will feature presentations by DAP mem- Chair-Elect: Fiona Harrison bers. Here are the key details: Vice Chair: Priyamvada Natarajan Past Chair: Paul Shapiro What: April 2017 APS Meeting Secretary/Treasurer: Scott Dodelson When: Saturday, Jan 28 – Tuesday, Jan 31, 2016 Deputy Sec./Treasurer: Where: Washington, DC (Marriott Wardman Park) Keivan Stassun Member-at-Large: Registration Deadline: January 6, 2017 Brenna Flaugher Division Councilor: The 2017 April Meeting will take place at the Marriott Ward- Miriam Forman man Park. Detailed information for the meeting, including details Member-at-Large: on registration and the scientific program can be found online at Daniel Kasen http://www.aps.org/meetings/april Member-at-Large: Marc Kamionkowski Note that you can still register on-site, if you don’t do so by the Member-at-Large: deadline. Tracy Slatyer Registration fees range from $30 for undergraduates to $480 for full members. Questions? Comments? Newsletter Editor: Keivan Stassun [email protected] Nominations for the APS DAP Executive Committee Officers Deadline: December 21, 2016 Each year the Division of Astrophysics (DAP) of the APS elects new members for the open positions on the DAP Executive Committee.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • Upcoming Events
    To view this email as a web page, go here. Upcoming Events Monday, October 12 4:00pm Physics Club. Sheldon Stone, Syracuse University, "Physics at LHCb" via zoom. Tuesday, October 13 12:00pm WIDG Seminar. Carl Rethmeier, Carleton University, "Measurement of Alpha-Decaying Backgrounds and the Search for 5.5 MeV Solar Axions in DEAP-3600" via zoom. 12:00pm Department of Chemistry Biophysical Seminar. Richard Cogdell, University of Glasgow, "Recent advances on the structure and function of purple bacterial light harvesting complexes" via zoom. 4:00pm DEIAP Town Hall. Karsten Heeger, Yale University, "Planning for DEI action" via zoom. Wednesday, October 14 3:30pm Earth and Planetary Science Colloquium. Daniel Ibarra, University of California Berkeley, "Drivers of warm and cold past wet states recorded by lakes in western North America" via zoom. 4:00pm Molecular, Cellular and Developmental Biology Seminar. Erin Carlson, University of Minnesota, "Chemical Microbiology: Translation and Control of Bacterial Behavior" via zoom. Hosted by Stavroula Hatzios. 4:00pm Department of Chemistry Organic Seminar. Jeff Chan, University of Illinois, "Expanding the Chemical Toolbox for Acoustic-based Imaging of Cancer" via zoom. 4:15pm Department of Mathematics Colloquium. Anna Gilbert, Yale University, "Title TBA" via zoom. Thursday, October 15 1:00pm NPA Seminar. Stefania Amodeo, Cornell, "Halo gas thermodynamics from the CMB: results from the Atacama Cosmology Telescope DR5" via zoom. 2:30pm Department of Astronomy Colloquium. Katelin Schutz, MIT Center for Theoretical Physics, "Making dark matter out of light: the cosmology of sub-MeV freeze-in" via zoom. Friday, October 16 4:00pm Yale Quantum Institute Open Mic.
    [Show full text]
  • Multifield Inflation After Planck: the Case for Nonminimal Couplings
    Multifield Inflation after Planck: The Case for Nonminimal Couplings David I. Kaiser and Evangelos I. Sfakianakis∗ Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA (Dated: January 8, 2014) Multifield models of inflation with nonminimal couplings are in excellent agreement with the recent results from Planck. Across a broad range of couplings and initial conditions, such models evolve along an effectively single-field attractor solution and predict values of the primordial spectral index and its running, the tensor-to-scalar ratio, and non-Gaussianities squarely in the observationally most-favored region. Such models also can amplify isocurvature perturbations, which could account for the low power recently observed in the CMB power spectrum at low multipoles. Future measurements of primordial isocurvature perturbations could distinguish between the currently viable possibilities. PACS numbers: 04.62+v; 98.80.Cq. Published in Phys. Rev. Lett. 112 (2014): 011302. Early-universe inflation remains the leading framework for understanding a variety of features of our observable universe [1, 2]. Most impressive has been the prediction of pri- mordial quantum fluctuations that could seed large-scale structure. Recent measurements of the spectral tilt of primordial (scalar) perturbations, ns, find a decisive departure from arXiv:1304.0363v3 [astro-ph.CO] 7 Jan 2014 a scale-invariant spectrum [3, 4]. The Planck collaboration's value, ns = 0:9603 ± 0:0073, differs from ns = 1 by more than 5σ. At the same time, observations with Planck constrain the ratio of tensor-to-scalar perturbations to r < 0:11 (95% CL), and are consistent with the absence of primordial non-Gaussianities, fNL ∼ 0 [4, 5].
    [Show full text]
  • Letter of Interest Cosmic Probes of Dark Matter Interactions
    Snowmass2021 - Letter of Interest Cosmic Probes of Dark Matter Interactions: Challenges for Theory and Analysis Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (TF09) Theory frontier/Astro-particle physics and Cosmology (TF08) Theory Frontier/BSM Model Building Contact Information: Vera Gluscevic (University of Southern California) [email protected] Kimberly K. Boddy (University of Texas at Austin) [email protected] Authors: (names and institutions) Vera Gluscevic (University of Southern California), Kimberly Boddy (UT Austin), Yacine Ali-Ha¨ımoud (New York University), Keith Bechtol (University of Wisconsin-Madison), Simon Birrer (Stanford Univer- sity), Torsten Bringmann (University of Oslo), Jens Chluba (University of Manchester), Djuna Croon (TRI- UMF), Francis-Yan Cyr-Racine (University of New Mexico), Caterina Doglioni (Lund University), Cora Dvorkin (Harvard University), Nicolas Fernandez (University of Illinois at Urbana-Champaign), Daniel Grin (Haverford College), Benjamin V. Lehmann (UC Santa Cruz), Julien Lesgourgues (RWTH Aachen University), Ethan Nadler (Stanford University), Julian B Munoz (Harvard-Smithsonian), Ashley Perko (University of Utah), Annika Peter
    [Show full text]
  • 2020 NHFP Fellows Symposium
    NASA's Hubble, Einstein and Sagan Fellowship programs have merged to form the NASA Hubble Fellowship Program (NHFP), continuing NASA’s pursuit of excellence in space science, through support of some of the field’s most creative and innovative recent PhD scientists. An important part of the NHFP is the annual Symposium, which provides current Hubble, Einstein and Sagan Fellows the opportunity to join together to discuss results of their research, to share results across all fields of NASA astrophysics, and to interact with the scientific and administrative staff who manage the program. The 2020 NHFP Symposium will be held as an all-virtual event September 21-25, 2020. !"!"#$%&'#&())*+,#-./0*,12/ -(03(/4(5#!67!89#!"!"#:;1532<)).#<=.+>(5(?# -@1(=@(#A<)B,C#6"D8#/1= !""#$%&'(#"%($')#%*#$+'#,-($'.*#/0#10#$%&'#23*'0##4.35.-&#($-.$(#6.3&6$"7#-$#89:;;#6&#'-<+#)-70 !"#$%&'()*+,*-.*/(01 89:;; !"#$%&"'()*'+),-%*.$,/%)'0-%&'1234'5"(*67'!*)7#=.><+$'.?#@-A*#B'"%*3?#4->"#B.''* 89:8C !"#$%&"'0-%&',8"'9:($"';"#"6$%:"'9$/")$"'+)6,/,.,"'< D'*#1'&E-<+?#@%.'<$3.#F1G1<HI 89:J;##4"-6:"$,/="'0-%&'1>9>'>6,-%:8?6/$6'@ 4->"#K'.$2#F!($.36+7(%<(#@%L%(%3*#@%.'<$3.?#M!1!#KNI !"#$%&'()*+,&'- 89:OC##A.(),.&'1".,-/)%';-()6:%-,'/)'9.:"-)%=("'()*'1".,-%)@6,(-'B"-C"-6'< P>Q'#R3+*(#F/S#T'.Q'"'7I 8:;;##D%6&/$'E(?'F/00.6/%)'/)'B(C)",/G"*';.-H.#")$"'U 1%7-3 V>#FH!1I 8:8C##F"="#%:&"),'%0'"I,-"&"',J%@,"&:"-(,.-"':#(6&(6'H?'-(*/(,/="'-"#(,/=/6,/$',.-H.#")$"'U W"-)%&%.# X+)-*Q%* F4.%*<'$3*I 8:J;##;8"'K-(=/,(,/%)(#'!(="'L)/="-6"';8-%.C8',8"'5")6'Y R3('#Z-.[-#,2\>%-5- F/0#3]#S+%<-53I
    [Show full text]