Tevpa 2017.Pdf

Tevpa 2017.Pdf

東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ TeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 東京大学 2004.2.12 シンボルマーク+ロゴタイプ 新東大ブルー 基本形 漢字のみ 英語のみ sub-GeV frontier in particle astrophysics Hitoshi Murayama (Berkeley, Kavli IPMU) TeVPA 2017, Columbus, Aug 11, 2017 +Yonit Hochberg, Eric Kuflik matter Ωm changes the overall heights of the peaks matter Ωm changes the overall heights of the peaks nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM DM SM “weak” coupling correct abundance “weak” mass scale Miracle2 nDM 10 GeV =4.4 10− WIMP Miracles ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ “weak” coupling correct abundance “weak” mass scale Miracle2 sociology • Particle physicists used to think sociology • Particle physicists used to think • need to solve problems with the SM sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim sociology • Particle physicists used to think • need to solve problems with the SM • hierarchy problem, strong CP, etc • it is great if a solution also gives dark matter candidate as an option • big ideas: supersymmetry, extra dim • probably because dark matter problem was not so established in 80’s 10 7 Interpretation -36 -36 superCDMS ] 10 ] 10 CDMSlite 2 CMS 2 CMS 10-37 10-37 -38 -38 SIMPLE 2012 direct detection 10 CMS, 90% CL, 7 TeV, 5.0 fb-1 10 - COUPP 2012+ 10-39 10-39 W CMS, 90% CL, 8 TeV, 19.7 fb-1 Super-K W µ -1 -40 (χγ χ)(qγ q) -40 CMS, 90% CL, 7 TeV, 5.0 fb µ - 10 10 +W CoGeNT 2011 Λ2 IceCube W -41 Vector -41 CMS, 90% CL, 8 TeV, 19.7 fb-1 10 SIMPLE 2012 10 (χγ γ χ)(qγ µγ q) 10-42 10-42 µ 5 5 Axial-vector operator 2 COUPP 2012 Λ -43 -43 10 CDMS II 10 χχα (Ga )2 -1 XENON1t s µν CMS, 90% CL, 8 TeV, 19.7LHC fb -44 -44 10 3 10 4Λ XENON100 -Nucleon Cross Section [cm -45 Scalar -Nucleon Cross Section [cm -45 χ 10 LUX 2013 χ 10 Spin Dependent Spin Independent 10-46 10-46 1 10 102 103 1 10 102 103 Mχ [GeV] Mχ [GeV] Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle mass and compared with previously published results. Left: limits for the vector and scalar operators from the previous CMS analysis [10], together with results from the CoGeNT [60], SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67] collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours + respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator e from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62], γSuper-K from [69], dSph and IceCube [70] collaborations. Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV (blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3 and M/8p. The dashed lines show contours of constant coupling pgcgq. K = s /s of 1.4 for d = 2, 3 , 1.3 for d = 4, 5 , and 1.2 for d = 6 [71]. Figure 7 shows 95% NLO LO { } { } CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7 shows the expected and observed limits at LO and NLO for the ADD model. Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un- ~~ ~ 0 ~ 0 ~ 0 ~ 0 t t production, t → b f f' χ∼ / t → c χ∼ / t → W b χ∼ / t → t χ∼ Status: ICHEP 2016 1 1 1 1 1 1 1 1 1 1 600 ATLAS Preliminary s=13 TeV ~ 0 ~ 0 -1 t → t ∼χ / t → W b ∼χ t0L 13.2 fb [CONF-2016-077] [GeV] 1 1 1 1 0 1 ~ 0 -1 ∼ χ t → t ∼χ t1L 13.2 fb [CONF-2016-050] 500 1 1 m ~ 0 t → W b ∼χ -1 1 1 t2L 13.3 fb [CONF-2016-076] ~ 0 -1 t → c ∼χ MJ 3.2 fb [1604.07773] 1 1 s=8 TeV, 20 fb-1 Run 1 [1506.08616] 400 Observed limits Expected limits All limits at 95% CL 300 W t + m 0 ) < m b 0 ) < 0 ∼ 1 ,χ ∼ 1 χ ~ t 1 , 0 ) < m ~ t 1 ∼χ 1 m( ~ , m( t 1 ∆ ∆ 0 m( c ∼ ∆ 200 χ1 0 b f f' ∼ χ1 100 13 TeV 8 TeV LQ1(ej) x2 LQ1(ej)+LQ1(νj) β=0.5 0 coloron(jj) x2 W b ∼ LQ2(μj) x2 χ1 LQ2(μj)+LQ2(νj) β=0.5 coloron(4j) x2 LQ3(τb) x2 Leptoquarks Multijet LQ3(νb) x2 gluino(3j) x2 LQ3(τt) x2 Resonances LQ3(vt) x2 gluino(jjb) x2 0 Single LQ1 (λ=1) 200 300 400 500 600 700 800 900Single LQ2 (λ=1) 0 1 2 3 4 TeV 0 1 2 3 4 TeV ~ ADD (γ+MET), nED=4, MD m [GeV] RS Gravitons ADD (jj), nED=4, MS t1 RS1(jj), k=0.1 RS1(γγ), k=0.1 QBH, nED=6, MD=4 TeV RS1(ee,μμ), k=0.1 NR BH, nED=6, MD=4 TeV 0 1 2 3 4 TeV String Scale (jj) QBH (jj), nED=4, MD=4 TeV CMS Preliminary ADD (j+MET), nED=4, MD no sign of ADD (ee,μμ), nED=4, MS Large Extra Heavy Gauge ADD (γγ), nED=4, MS Dimensions SSM Z'(ττ) Jet Extinction Scale Bosons SSM Z'(jj) 0 1 2 3 4 5 6 7 8 9 10 new physics SSM Z'(ee)+Z'(µµ) TeV SSM W'(jj) dijets, Λ+ LL/RR SSM W'(lv) dijets, Λ- LL/RR SSM Z'(bb) dimuons, Λ+ LLIM that explains 0 1 2 3 4 5 TeV dimuons, Λ- LLIM dielectrons, Λ+ LLIM Excited dielectrons, Λ- LLIM e* (M=Λ) Fermions single e, Λ HnCM μ* (M=Λ) single μ, Λ HnCM Compositeness q* (qg) hierarchy problem! inclusive jets, Λ+ q* (qγ) f=1 b* inclusive jets, Λ- 0 1 2 3 4 5 6 TeV 0 1 2 3 4 5 6 7 8 9 1011121314151617181920TeV21 CMS Exotica Physics Group Summary – ICHEP, 2016! recent thinking recent thinking • dark matter definitely exists recent thinking • dark matter definitely exists • hierarchy problem may be optional? recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two • do we really need big ideas like SUSY? recent thinking • dark matter definitely exists • hierarchy problem may be optional? • need to explain dark matter on its own • perhaps we should decouple these two • do we really need big ideas like SUSY? • perhaps we can solve it with ideas more familiar to us? mass [GeV] 1050 1040 1030 1020 1010 100 10–10 10–20 10–30 mass [GeV] 1050 etc mirolensing 1040 1030 1020 1010 100 10–10 10–20 10–30 mass [GeV] 1050 etc mirolensing 1040 1030 1020 1010 100 10–10 10–20 –30 10 to fluffy to mass [GeV] 1050 etc mirolensing 1040 1030 no good idea good no 1020 1010 100 10–10 10–20 –30 10 to fluffy to mass mass [GeV] [GeV] 1050 etc mirolensing 106 1040 1030 no good idea good no 1020 100 1010 100 10–10 10–20 –30 10–10 10 to fluffy to mass mass [GeV] [GeV] defects 1050 etc mirolensing 106 non-thermal 1040 30 10 WIMP asymmetric DM asymmetric no good idea good no 1020 100 1010 gravitino 100 sterile neutrino sterile 10–10 vector vector mediation 10–20 w/ moduli 10–30 10–10 to fluffy to axion QCD mass mass [GeV] [GeV] defects 1050 etc mirolensing 106 non-thermal 1040 30 10 WIMP asymmetric DM asymmetric no good idea good no 1020 100 SIMP 1010 gravitino 100 sterile neutrino sterile 10–10 vector vector mediation 10–20 w/ moduli 10–30 10–10 to fluffy to axion QCD Seminar in Berkeley Strongly Interacting Massive Particle (SIMP) Yonit Hochberg nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM DM DM DM nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ ⇡ m 300MeV DM DM ⇡ nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ ⇡ m 300MeV DM DM ⇡ SIMP miracle! nDM 10 GeV =4.4 10− Miracles s ⇥ mDM DM SM ↵2 σ2 2v h ! i⇡m2 2 ↵ 10− ⇡ m 300 GeV DM SM ⇡ WIMP miracle! DM DM 3 2 ↵ σ3 2v h ! i⇡m5 DM ↵ 4⇡ Hochberg, Kuflik, ⇡ Volansky, Wacker m 300MeVarXiv:1402.5143 DM DM ⇡ SIMP miracle! LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 H Γann ndm σv 2 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 H Γann ndm σv 2 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! ↵2 mdmndm mpnb σv ⇠ 2 2 2 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! 3 2 ↵ mdmndm mpnb σv ⇠ 3 2 5 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' 2 2 Teq↵ mdm Γann 3 H 2 ' xF ' MplxF 3→2 LEE-WEINBERG FREEZE-OUT Back of the envelope calculation Γ H ann ' |freezeout T 2 2 2 H Γann ndm σv 3 2 ' Mpl ' h i ! 3 2 ↵ mdmndm mpnb σv ⇠ 3 2 5 h i ! ' mdm nb ⌘bs ⇠ Eric Kuflik ⌘ T /m s T 3 b ' eq p ' T 2 ↵3 m2 Γ eq H dm ann ' x4 m ' M x2 F ⇥ dm pl F nDM 10 GeV =4.4 10− SIMPlest Miracles ⇥ mDM • Not only the mass scale is similar to QCD DM DM • dynamics itself can be QCD! Miracle3 DM • DM = pions = qq¯ • e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    76 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us