Yosemite Report 2004 -- Mammals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the Long Valley Caldera, Mono-Inyo Craters
DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-1933 US. GEOLOGICAL SURVEY GEOLOGIC MAP OF LONG VALLEY CALDERA, MONO-INYO CRATERS VOLCANIC CHAIN, AND VICINITY, EASTERN CALIFORNIA By Roy A. Bailey GEOLOGIC SETTING VOLCANISM Long Valley caldera and the Mono-Inyo Craters Long Valley caldera volcanic chain compose a late Tertiary to Quaternary Volcanism in the Long Valley area (Bailey and others, volcanic complex on the west edge of the Basin and 1976; Bailey, 1982b) began about 3.6 Ma with Range Province at the base of the Sierra Nevada frontal widespread eruption of trachybasaltic-trachyandesitic fault escarpment. The caldera, an east-west-elongate, lavas on a moderately well dissected upland surface oval depression 17 by 32 km, is located just northwest (Huber, 1981).Erosional remnants of these mafic lavas of the northern end of the Owens Valley rift and forms are scattered over a 4,000-km2 area extending from the a reentrant or offset in the Sierran escarpment, Adobe Hills (5-10 km notheast of the map area), commonly referred to as the "Mammoth embayment.'? around the periphery of Long Valley caldera, and The Mono-Inyo Craters volcanic chain forms a north- southwestward into the High Sierra. Although these trending zone of volcanic vents extending 45 km from lavas never formed a continuous cover over this region, the west moat of the caldera to Mono Lake. The their wide distribution suggests an extensive mantle prevolcanic basement in the area is mainly Mesozoic source for these initial mafic eruptions. Between 3.0 granitic rock of the Sierra Nevada batholith and and 2.5 Ma quartz-latite domes and flows erupted near Paleozoic metasedimentary and Mesozoic metavolcanic the north and northwest rims of the present caldera, at rocks of the Mount Morrisen, Gull Lake, and Ritter and near Bald Mountain and on San Joaquin Ridge Range roof pendants (map A). -
Yosemite, Lake Tahoe & the Eastern Sierra
Emerald Bay, Lake Tahoe PCC EXTENSION YOSEMITE, LAKE TAHOE & THE EASTERN SIERRA FEATURING THE ALABAMA HILLS - MAMMOTH LAKES - MONO LAKE - TIOGA PASS - TUOLUMNE MEADOWS - YOSEMITE VALLEY AUGUST 8-12, 2021 ~ 5 DAY TOUR TOUR HIGHLIGHTS w Travel the length of geologic-rich Highway 395 in the shadow of the Sierra Nevada with sightseeing to include the Alabama Hills, the June Lake Loop, and the Museum of Lone Pine Film History w Visit the Mono Lake Visitors Center and Alabama Hills Mono Lake enjoy an included picnic and time to admire the tufa towers on the shores of Mono Lake w Stay two nights in South Lake Tahoe in an upscale, all- suites hotel within walking distance of the casino hotels, with sightseeing to include a driving tour around the north side of Lake Tahoe and a narrated lunch cruise on Lake Tahoe to the spectacular Emerald Bay w Travel over Tioga Pass and into Yosemite Yosemite Valley Tuolumne Meadows National Park with sightseeing to include Tuolumne Meadows, Tenaya Lake, Olmstead ITINERARY Point and sights in the Yosemite Valley including El Capitan, Half Dome and Embark on a unique adventure to discover the majesty of the Sierra Nevada. Born of fire and ice, the Yosemite Village granite peaks, valleys and lakes of the High Sierra have been sculpted by glaciers, wind and weather into some of nature’s most glorious works. From the eroded rocks of the Alabama Hills, to the glacier-formed w Enjoy an overnight stay at a Yosemite-area June Lake Loop, to the incredible beauty of Lake Tahoe and Yosemite National Park, this tour features lodge with a private balcony overlooking the Mother Nature at her best. -
Consequences of Drying Lake Systems Around the World
Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic -
Yosemite National Park U.S
National Park Service Yosemite National Park U.S. Department of the Interior Merced Wild & Scenic River Final Comprehensive Management Plan and Environmental Impact Statement Designated in 1987, the The Merced Wild and Scenic River Merced Wild and Scenic River Final Comprehensive Merced Wild and Scenic River includes 81 miles The Merced Wild and Scenic River, designated in Management Plan and Environmental Impact State- in Yosemite National 1987, includes 122 miles of the Merced River on the ment (Final Merced River Plan/EIS) is the National Park and the El Portal Park Service’s response to these requirements. Administrative Site. western side of the Sierra Nevada in California. The National Park Service (NPS) manages 81 miles of the Merced Wild and Scenic River through Yosem- The Final Merced River Plan/EIS will be the guid- ite National Park and the El Portal Administrative ing document for protecting and enhancing river Site, including the headwaters and both the Mer- values and managing use and user capacity within ced River’s main stem and the South Fork Merced the Merced River corridor for the next 20 years. As River. As the Merced River flows outside Yosemite’s such, it evaluates impacts and threats to river values western boundary, the U.S. Forest Service and the and identifies strategies for protecting and enhanc- Bureau of Land Management manage the next 41 ing these values over the long-term. The plan fol- miles of the Merced Wild and Scenic River. lows and documents planning processes required by the National Environmental Policy Act (NEPA), Why a Comprehensive Management Plan? the National Historic Preservation Act (NHPA), The Wild and Scenic Rivers Act (WSRA) requires and other legal mandates governing National Park comprehensive planning for all designated rivers to Service decision-making. -
Sacramento and San Joaquin Basins Climate Impact Assessment
Technical Appendix Sacramento and San Joaquin Basins Climate Impact Assessment U.S. Department of the Interior Bureau of Reclamation October 2014 Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Technical Appendix Sacramento and San Joaquin Basins Climate Impact Assessment Prepared for Reclamation by CH2M HILL under Contract No. R12PD80946 U.S. Department of the Interior Bureau of Reclamation Michael K. Tansey, PhD, Mid-Pacific Region Climate Change Coordinator Arlan Nickel, Mid-Pacific Region Basin Studies Coordinator By CH2M HILL Brian Van Lienden, PE, Water Resources Engineer Armin Munévar, PE, Water Resources Engineer Tapash Das, PhD, Water Resources Engineer U.S. Department of the Interior Bureau of Reclamation October 2014 This page left intentionally blank Table of Contents Table of Contents Page Abbreviations and Acronyms ....................................................................... xvii Preface ......................................................................................................... xxi 1.0 Technical Approach .............................................................................. 1 2.0 Socioeconomic-Climate Future -
Introducing Terminal Lakes Joe Eilers and Ron Larson
Terminal Lakes Introducing Terminal Lakes Joe Eilers and Ron Larson Study Lakes akes tend to be among the more ephemeral features of the landscape Land generally are formed and disappear rapidly on a geological time frame. However, to see groups of lakes disappear within a lifetime is typically not a natural phenomenon. Here in Oregon, we’ve witnessed the desiccation of what was formerly a 16-mile-long lake in a little over a decade. Endorehic lakes, commonly referred to as terminal lakes because they lack an outlet, are among the most vulnerable of lakes to human intervention. Because terminal lakes are usually located in arid environments where water is extremely valuable, they are the first to lose among the competing forces for water. But that doesn’t have to be the case. In some respects, terminal lakes are far easier to restore than eutrophic/hypereutrophic systems. No expensive alum treatments, no dredging, no chemicals . just add water and life returns: but as those in West know, “Whiskey is for drinking; water is for fighting over.” And fight we must. In this issue of LakeLine, we describe a series of terminal lakes in the western United States starting with the least saline lake among the group, Walker Lake, and ending with Lake Winnemucca, which was desiccated in the 20th century (Figure 1). Like all lakes, each of these has a unique story to relate with different Figure 1. Terminal lakes in the western United States described in this issue. chemistry and biota. The loss of Lake Winnemucca is an informative tale, but it a wider audience and reach a solution migration when the birds replenish fat is not necessarily the inevitable outcome that ensures adequate water to save the reserves. -
Campground in Yosemite National Park
MileByMile.com Personal Road Trip Guide California Byway Highway # "Tioga Road/Big Oak Flat Road" Miles ITEM SUMMARY 0.0 End of Tioga Pass Road on Scenic Tioga Pass Road on State Highway #120, ends at the junction of State Highway #120 Big Oak Road just outside Yosemite Valley within Yosemite National Park, California. Altitude: 6158 feet 0.6 Tuolumne Grove Trail Tuolumne Grove Trail Head, Tioga Pass Road, Tuolumne Grove, is a Head sequoia grove located near Crane Flat in Yosemite National Park, California Altitude: 6188 feet 3.7 Old Big Oak Flat Road South to Tamarack Flat Campground in Yosemite National Park. Has 52 campsites, picnic tables, food lockers, fire rings, and vault toilets. Altitude: 7018 feet 6.2 Old Tioga Road Trail To Old Tioga Road, Hetch Hetchy Reservoir, lies in Hetch Hetchy Valley, which is completely flooded by the Hetch Hetchy Dam, in Yosemite National Park, California. Wapama Falls, in Hetch Hetchy Valley, Lake Vernon, Rancheria Falls, Rancheria Creek, Camp Mather Lake. Altitude: 6772 feet 6.2 Trail to Tamarrack Flat Altitude: 6775 feet Campground 13.7 Siesta Lake Altitude: 7986 feet 14.5 White Wolf Road To White Wolf Campground, located outside of Yosemite Valley, just off Tioga Pass Road in California. Altitude: 8117 feet 16.5 Access To Luken's Lake, Yosemite Creek Trail, Altitude: 8182 feet 19.7 Access A mountainous Road/Trail, Quaking Aspen Falls, is a seasonal water fall, that stream relies on rain and snow melting, dries up in summer, located just off Tioga Pass Road, in Yosemite National Park, Altitude: 7500 feet 20.3 Quaking Aspen Falls East of highway. -
Open-File/Color For
Questions about Lake Manly’s age, extent, and source Michael N. Machette, Ralph E. Klinger, and Jeffrey R. Knott ABSTRACT extent to form more than a shallow n this paper, we grapple with the timing of Lake Manly, an inconstant lake. A search for traces of any ancient lake that inundated Death Valley in the Pleistocene upper lines [shorelines] around the slopes Iepoch. The pluvial lake(s) of Death Valley are known col- leading into Death Valley has failed to lectively as Lake Manly (Hooke, 1999), just as the term Lake reveal evidence that any considerable lake Bonneville is used for the recurring deep-water Pleistocene lake has ever existed there.” (Gale, 1914, p. in northern Utah. As with other closed basins in the western 401, as cited in Hunt and Mabey, 1966, U.S., Death Valley may have been occupied by a shallow to p. A69.) deep lake during marine oxygen-isotope stages II (Tioga glacia- So, almost 20 years after Russell’s inference of tion), IV (Tenaya glaciation), and/or VI (Tahoe glaciation), as a lake in Death Valley, the pot was just start- well as other times earlier in the Quaternary. Geomorphic ing to simmer. C arguments and uranium-series disequilibrium dating of lacus- trine tufas suggest that most prominent high-level features of RECOGNITION AND NAMING OF Lake Manly, such as shorelines, strandlines, spits, bars, and tufa LAKE MANLY H deposits, are related to marine oxygen-isotope stage VI (OIS6, In 1924, Levi Noble—who would go on to 128-180 ka), whereas other geomorphic arguments and limited have a long and distinguished career in Death radiocarbon and luminescence age determinations suggest a Valley—discovered the first evidence for a younger lake phase (OIS 2 or 4). -
STUDY of INCREASING CONVEY CAPACITY of MERCED RIVER at the CONFLUENCE with SAN JOAQUIN RIVER a Project Presented to the Faculty
STUDY OF INCREASING CONVEY CAPACITY OF MERCED RIVER AT THE CONFLUENCE WITH SAN JOAQUIN RIVER A Project Presented to the faculty of the Department of Civil Engineering California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Civil Engineering (Water Resources Engineering) by Hani Nour SUMMER 2017 © 2017 Hani Nour ALL RIGHTS RESERVED ii STUDY OF INCREASING CONVEY CAPACITY OF MERCED RIVER AT THE CONFLUENCE WITH SAN JOAQUIN RIVER A Project by Hani Nour Approved by: __________________________________, Committee Chair Dr. Saad Merayyan __________________________________, Second Reader Dr. Cristina Poindexter, P.E. ___________________________ Date iii Student: Hani Nour I certify that this student has met the requirements for format contained in the University format manual, and that this project is suitable for shelving in the Library and credit is to be awarded for the project. _________________________, Department Chair ______________ Dr. Benjamin Fell, P.E. Date Department of Civil Engineering iv Abstract of STUDY OF INCREASING CONVEY CAPACITY OF MERCED RIVER AT THE CONFLUNENCE WITH SAN JOAQUIN RIVER by Hani Nour Flooding in California’s Central Valley is very common and expected to occur every year anywhere throughout the region. The climate and geography of the Central Valley, together, are responsible for over flow streams, rivers, and lakes causing water flooding, particularly at the lower elevation areas. San Joaquin Basin is located between the Sierra Nevada (on the east) and the Coast Ranges (on the west) where flooding is typically characterized by infrequent severe storms during winter season due to heavy rain and snow- melt runoff coming from the foothills, east of Merced County (Jesse Patchett 2012). -
2021 Falling for the Migration
Falling for the Migration: Bridgeport, Crowley, Mono American Avocets in flight, photo by Bob Steele August 20–22, 2021 ● Dave Shuford $182 per person / $167 for Mono Lake Committee members enrollment limited to 10 participants Welcome to our field seminar on the fall migration of birds in the Bridgeport Valley and the adjacent Sierra, the Mono Basin, Crowley Lake, Long Valley, and the outskirts of Mammoth Lakes. Beginners as well as experts will enjoy this introduction to the area’s birdlife found in a wide variety of habitats, from the shimmering shores of Mono Lake to lofty Sierra peaks. We will identify about 100 species by plumage and calls, and probe the secrets of their natural history. This seminar will include informal discussions on migration strategies, behavior, and ecology that complement our field observations. This seminar will involve easy hiking at elevations ranging from 6,400 to 9,600 feet above sea level. We will hike 1–2 miles a day, mostly on level terrain. The first stop Friday morning is at Bridgeport Reservoir, a mecca for migrant and late‐breeding waterbirds. For those who prefer to meet the seminar at this location (arriving Friday morning from points north), please contact Nora Livingston at [email protected] or (760) 647‐6595 to obtain directions. Dave Shuford is an expert birder, avid naturalist and teacher, and a retired professional ornithologist. Dave’s bird research in the region includes a long‐term study on the ecology of Mono Lake’s California Gull colony, an atlas of breeding birds in the Glass Mountain area, and surveys of Snowy Plovers at Mono and Owens lakes. -
California Water & Sierra Nevada Hydrology
- Adaptive management - California water & Sierra Nevada hydrology - SNRI & UC Merced Roger Bales Sierra Nevada Research Institute UC Merced Forest adaptive management: water 3 objectives: Measure changes in water quality & water budget in representative areas subjected to Framework/SPLATS treatment Estimate the impact of forest treatments on water quality, water budget & aquatic habitat at three levels: watershed, forest, bioregion Provide basis for continuing operational assessment of how Framework treatments will impact streams, water cycle & forest health Sierra Nevada Adaptive Management Program snamp.cnr.berkeley.edu Tasks: Water Quality & Quantity Field measurement program – before/after treatment – controls in parallel w/ treatment – stream temperature, turbidity, dissolved oxygen, electrical conductivity – stream stage/discharge, soil moisture – meteorology, erosion, soil temperature, snowpack, precipitation Modeling & spatial scaling – integrate observations using hydrologic model – estimate model parameters from satellite & ground data – extend impacts across hydrologic & watershed conditions – couple watershed, erosion, stream responses Sierra Nevada Adaptive Management Program snamp.cnr.berkeley.edu Tahoe NF catchments Hydrology focuses on 3 smaller catchments: − treatment − control − higher elevation, future treatment Same strategy in Sierra NF California’s water resources challenges: increasing pressure on mountain resources 1. Changing urban & agricultural water demand 2. Sea level rise 3. Reduction of average annual snowpack -
A Visitor's Guide to the Sierra National Forest
Sierra Traveler A Visitor’s Guide to the Sierra National Forest Photo by Joshua Courter by Joshua Photo Anne Lake, Ansel Adams Wilderness - Sierra National Forest What are you interested in doing in the Sierra? Can we help you find what you want to do in the Sierra? Visit Your National Forest! Destinations ......................................................................................................... 2 Sierra National Forest Supervisors Office Camping Guide .................................................................................................. 3 1600 Tollhouse Rd. Clovis, CA 93611 Helpful Hints ........................................................................................................ 4 (559) 297-0706 Merced River Country ...................................................................................... 5 Yosemite South/Highway 41 .......................................................................... 6 High Sierra Ranger District Bass Lake ............................................................................................................... 7 29688 Auberry Rd. Prather, CA 93651 Mammoth Pool Reservoir ............................................................................... 8 (559) 855-5355 San Joaquin River Gorge Management ..................................................... 9 Bass Lake Ranger District Sierra Vista National Scenic Byway ...................................................... 10-12 57003 Road 225 North Fork, CA 93643 Dinkey Creek/McKinley Grove ....................................................................