Contrasting Taxonomic Stratification of Microbial Communities in Two Hypersaline Meromictic Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Contrasting Taxonomic Stratification of Microbial Communities in Two Hypersaline Meromictic Lakes The ISME Journal (2015) 9, 2642–2656 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes Adrian-Ştefan Andrei1,2,11, Michael S Robeson II3,4,11, Andreea Baricz2,5, Cristian Coman2,5, Vasile Muntean2, Artur Ionescu6, Giuseppe Etiope6,7, Mircea Alexe8, Cosmin Ionel Sicora9, Mircea Podar3,10 and Horia Leonard Banciu1,2 1Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, Cluj-Napoca, Romania; 2Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania; 3Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 4Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA; 5National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania; 6Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania; 7Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy; 8Faculty of Geography, Babeş-Bolyai University, Cluj-Napoca, Romania; 9Biological Research Center, Jibou, Romania and 10Department of Microbiology, University of Tennessee, Knoxville, TN, USA Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep- coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain- specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes’ hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. The ISME Journal (2015) 9, 2642–2656; doi:10.1038/ismej.2015.60; published online 1 May 2015 Introduction boundary layer (chemocline) (Boehrer and Schultze, 2009). These lakes are important model Meromictic (permanently stratified) lakes are dis- systems for aquatic biology research, because their tinct hydrological environments characterized by a constant vertical stratification, steep chemical persistent physicochemical stratification that cir- gradients and the presence of oxygen-deprived cumvents deep water recirculation. As a conse- zones favor niche partitioning among prokaryotic quence, they commonly comprise an upper stratum populations, enabling the study of vertical zonations where mixing occurs (mixolimnion), a stagnant in microbially-mediated biogeochemical cycling lower one (monimolimnion) and an interposing (Lauro et al., 2011; Lopes et al., 2011; La Cono et al., 2013). Correspondence: HL Banciu, Department of Molecular Biology Ursu and Fara Fund Lakes are 2 of the 41 and Biotechnology, Babeş-Bolyai University, 5-7 Clinicilor Street, permanent saline water bodies occurring in the Cluj-Napoca 400006, Romania. Transylvanian Basin (Romania) that were formed E-mail: [email protected] 11These two authors contributed equally to this work. between the eighteenth and nineteenth centuries Received 21 September 2014; revised 14 February 2015; accepted (Alexe, 2010) on the salt deposits produced by the 18 March 2015; published online 1 May 2015 Paratethys Sea evaporation (during the Badenian Prokaryotic diversity in hypersaline lakes A-S¸ Andrei et al 2643 salinity crisis, ca. 14 Myr ago). These two temperate The purpose of this study was to compare the lakes are unique among the other Romanian salt prokaryotic diversity and link it with limnological lakes because of their heliothermy (that is, trapping data in two distinct meromictic hypersaline lakes of solar radiation by a ‘saline lens’), size (that is, Ursu that differ in their hydric regimen, physicochemical Lake is one of the largest heliothermal salt lakes in characteristics, genesis and conservation status. Europe), conservation status (that is, Fara Fund Lake This would enable novel inferences regarding the is a protected area) and lake processes (that is, Ursu microbial ecology and geochemical cycles in bio- Lake is a natural lake whereas Fara Fund Lake is an energetically constrained stratified environments. To artificial one) (Alexe, 2010; Máthé et al., 2014). In achieve this aim, the vertical distribution and spite of their different genesis, they belong to the community structure of the prokaryotes thriving in same type of meromictic lakes, where the water the two lakes was investigated by combining deep- column overturn is hampered by strong salinity coverage small subunit (SSU) ribosomal RNA (rDNA) gradients. Although studies investigating the micro- amplicon sequencing, community domain-specific biota and substance turnover in meromictic lakes are quantitative PCR, chemical analyses and bioinfor- available (Biderre-Petit et al., 2011; Habicht et al., matics. Concentration and stable C isotope composi- 2011; Hamilton et al., 2014), most of the ones tion of dissolved methane and heavier alkanes were concerning the hypersaline water bodies were also analyzed for a preliminary assessment of performed on Arctic (Pouliot et al., 2009; Comeau microbial or other sources of hydrocarbons. et al., 2012) or Antarctic (Bowman et al., 2000; Lauro et al., 2011) lakes. Although information on tempe- rate neutral hypersaline meromictic lakes microbiota Materials and methods are scarce, previous investigations on Ursu Lake prokaryotes (using community-level physiological Site description and sampling profiling, culture-dependent and PCR–denaturing Ursu Lake (46°36’15 N; 25°05’09 E) is a natural gradient gel electrophoresis methods) have shown meromictic lake located at 505 m elevation in the the presence of active and diverse communities eastern part of the Transylvanian Basin. Having a (Cristea et al., 2014; Máthé et al., 2014); yet, a surface of 41 270 m2 and a maximum depth of 18.2 m detailed molecular diversity study is not available to (Figure 1b), it was formed in a depression caused by date. The microbial diversity of Fara Fund Lake has an intense process of salt dissolution between 1875 not been previously investigated, and hence the lake and 1880 (Alexe, 2010; Máthé et al., 2014). Cur- could constitute a valuable site for monitoring long- rently, it is exploited for recreational purposes term dynamics of microbial communities that are not during late-May to mid-August. Fara Fund under the impact of human activities. (45°52’34 N; 24°04’03 E) is an artificial meromictic Figure 1 Ursu Lake and Fara Fund Lake sampling sites. (a) Map showing the location of the lakes within Transylvanian Basin (Romania). The symbol size is not proportional with the sizes of the lakes. (b) Topo-bathymetric profile of Ursu and (c) Fara Fund lakes’ basins. The circles indicate the sampling points. The ISME Journal Prokaryotic diversity in hypersaline lakes A-S¸ Andrei et al 2644 pit lake situated at 383 m elevation in the southern combustion and infrared detection of CO2 released. area of the Transylvanian Basin (Figure 1a). Having a Both parameters (total nitrogen and total organic relatively small surface (∼1700 m2) and a maximum carbon) were measured according to EN 12260 and depth of 32 m (Figure 1b), this athalassic (sensu, EN 1484, respectively, using the multi N/C 2100S Hammer, 1986) lake was formed in 1775 on the area Analyzer (Analytik Jena, Jena, Germany). Relative of a late medieval bell-shaped salt mine that was shut expanded measurement uncertainty was calculated down at the end of the seventeenth century. according to International Organization for Standardi- Presently, it is declared as a protected area, as a zation—Guide to the expression of Uncertainty consequence of its strong heliothermy (Alexe, 2010). Measurement using a coverage factor (k)of2(k =2), The vertical sampling was carried out in October equivalent to a confidence of ∼ 95%. Uc ranged from 2013 using an inflatable boat positioned near the 4.5% to 13% depending on the compound as follows: 2+ − center of the lakes (Figures 1b and c). In situ 4.5% for Mg ;8%forHCO3, particulate Fe and 2+
Recommended publications
  • An Analysis of Primary and Secondary Production in Lake Kariba in a Changing Climate
    AN ANALYSIS OF PRIMARY AND SECONDARY PRODUCTION IN LAKE KARIBA IN A CHANGING CLIMATE MZIME R. NDEBELE-MURISA A thesis submitted in partial fulfillment of the requirements for the degree of Doctor Philosophiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape Supervisor: Prof. Charles Musil Co-Supervisor: Prof. Lincoln Raitt May 2011 An analysis of primary and secondary production in Lake Kariba in a changing climate Mzime Regina Ndebele-Murisa KEYWORDS Climate warming Limnology Primary production Phytoplankton Zooplankton Kapenta production Lake Kariba i Abstract Title: An analysis of primary and secondary production in Lake Kariba in a changing climate M.R. Ndebele-Murisa PhD, Biodiversity and Conservation Biology Department, University of the Western Cape Analysis of temperature, rainfall and evaporation records over a 44-year period spanning the years 1964 to 2008 indicates changes in the climate around Lake Kariba. Mean annual temperatures have increased by approximately 1.5oC, and pan evaporation rates by about 25%, with rainfall having declined by an average of 27.1 mm since 1964 at an average rate of 6.3 mm per decade. At the same time, lake water temperatures, evaporation rates, and water loss from the lake have increased, which have adversely affected lake water levels, nutrient and thermal dynamics. The most prominent influence of the changing climate on Lake Kariba has been a reduction in the lake water levels, averaging 9.5 m over the past two decades. These are associated with increased warming, reduced rainfall and diminished water and therefore nutrient inflow into the lake. The warmer climate has increased temperatures in the upper layers of lake water, the epilimnion, by an overall average of 1.9°C between 1965 and 2009.
    [Show full text]
  • Template for Two-Page Abstracts in Word 97 (PC)
    GEOLOGIC MAPPING OF THE LUNAR SOUTH POLE QUADRANGLE (LQ-30). S.C. Mest1,2, D.C. Ber- man1, and N.E. Petro2, 1Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719-2395 ([email protected]); 2Planetary Geodynamics Laboratory, Code 698, NASA GSFC, Greenbelt, MD 20771. Introduction: In this study we use recent image, the surface [7]. Impact craters display morphologies spectral and topographic data to map the geology of the ranging from simple to complex [7-9,24] and most lunar South Pole quadrangle (LQ-30) at 1:2.5M scale contain floor deposits distinct from surrounding mate- [1-7]. The overall objective of this research is to con- rials. Most of these deposits likely consist of impact strain the geologic evolution of LQ-30 (60°-90°S, 0°- melt; however, some deposits, especially on the floors ±180°) with specific emphasis on evaluation of a) the of the larger craters and basins (e.g., Antoniadi), ex- regional effects of impact basin formation, and b) the hibit low albedo and smooth surfaces and may contain spatial distribution of ejecta, in particular resulting mare. Higher albedo deposits tend to contain a higher from formation of the South Pole-Aitken (SPA) basin density of superposed impact craters. and other large basins. Key scientific objectives in- Antoniadi Crater. Antoniadi crater (D=150 km; clude: 1) Determining the geologic history of LQ-30 69.5°S, 172°W) is unique for several reasons. First, and examining the spatial and temporal variability of Antoniadi is the only lunar crater that contains both a geologic processes within the map area.
    [Show full text]
  • Thureborn Et Al 2013
    http://www.diva-portal.org This is the published version of a paper published in PLoS ONE. Citation for the original published paper (version of record): Thureborn, P., Lundin, D., Plathan, J., Poole, A., Sjöberg, B. et al. (2013) A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities. PLoS ONE, 8(9): e74983 http://dx.doi.org/10.1371/journal.pone.0074983 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-20021 A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities Petter Thureborn1,2*., Daniel Lundin1,3,4., Josefin Plathan2., Anthony M. Poole2,5, Britt-Marie Sjo¨ berg2,4, Sara Sjo¨ ling1 1 School of Natural Sciences and Environmental Studies, So¨derto¨rn University, Huddinge, Sweden, 2 Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden, 3 Science for Life Laboratories, Royal Institute of Technology, Solna, Sweden, 4 Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden, 5 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand Abstract The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment.
    [Show full text]
  • A Dolomitization Event at the Oceanic Chemocline During the Permian-Triassic Transition Mingtao Li1, Haijun Song1*, Thomas J
    https://doi.org/10.1130/G45479.1 Manuscript received 11 August 2018 Revised manuscript received 4 October 2018 Manuscript accepted 5 October 2018 © 2018 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 23 October 2018 A dolomitization event at the oceanic chemocline during the Permian-Triassic transition Mingtao Li1, Haijun Song1*, Thomas J. Algeo1,2,3, Paul B. Wignall4, Xu Dai1, and Adam D. Woods5 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China 2State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science, China University of Geosciences, Wuhan 430074, China 3Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013, USA 4School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 5Department of Geological Sciences, California State University, Fullerton, California 92834-6850, USA ABSTRACT in dolomite in the uppermost Permian–lowermost Triassic was first noted The Permian-Triassic boundary (PTB) crisis caused major short- by Wignall and Twitchett (2002) and has been attributed to an increased term perturbations in ocean chemistry, as recorded by the precipita- weathering flux of Mg-bearing clays to the ocean (Algeo et al., 2011). tion of anachronistic carbonates. Here, we document for the first time Here, we examine the distribution of dolomite in 22 PTB sections, docu- a global dolomitization event during the Permian-Triassic transition menting a global dolomitization event and identifying additional controls based on Mg/(Mg + Ca) data from 22 sections with a global distri- on its formation during the Permian-Triassic transition.
    [Show full text]
  • Water Resources Report
    MMINNEAPOLISINNEAPOLIS PPARKARK && RRECREATIONECREATION BBOARDOARD 20122012 WWATERATER RRESOURCESESOURCES RREPORTEPORT Environmental Stewardship Water Resources Management www.minneapolisparks.org January 2015 2012 WATER RESOURCES REPORT Prepared by: Minneapolis Park & Recreation Board Environmental Stewardship 3800 Bryant Avenue South Minneapolis, MN 55409-1029 612.230.6400 www.minneapolisparks.org January 2015 Funding provided by: Minneapolis Park & Recreation Board City of Minneapolis Public Works Copyright © 2015 by the Minneapolis Park & Recreation Board Material may be quoted with attribution. TABLE OF CONTENTS Page Abbreviations ............................................................................................................................. i Executive Summary ............................................................................................................... iv 1. Monitoring Program Overview .............................................................................................. 1-1 2. Birch Pond .............................................................................................................................. 2-1 3. Brownie Lake ......................................................................................................................... 3-1 4. Lake Calhoun ......................................................................................................................... 4-1 5. Cedar Lake ............................................................................................................................
    [Show full text]
  • Top-Down Trophic Cascades in Three Meromictic Lakes Tanner J
    Top-down Trophic Cascades in Three Meromictic Lakes Tanner J. Kraft, Caitlin T. Newman, Michael A. Smith, Bill J. Spohr Ecology 3807, Itasca Biological Station, University of Minnesota Abstract Projections of tropic cascades from a top-down model suggest that biotic characteristics of a lake can be predicted by the presence of planktivorous fish. From the same perspective, the presence of planktivorous fish can theoretically be predicted based off of the sampled biotic factors. Under such theory, the presence of planktivorous fish contributes to low zooplankton abundances, increased zooplankton predator-avoidance techniques, and subsequent growth increases of algae. Lakes without planktivorous fish would theoretically experience zooplankton population booms and subsequent decreased algae growth. These assumptions were used to describe the tropic interactions of Arco, Deming, and Josephine Lakes; three relatively similar meromictic lakes differing primarily from their absence or presence of planktivorous fish. Due to the presence of several other physical, chemical, and environmental factors that were not sampled, these assumptions did not adequately predict the relative abundances of zooplankton and algae in a lake based solely on the fish status. However, the theory did successfully predict the depth preferences of zooplankton based on the presence or absence of fish. Introduction Trophic cascades play a major role in the ecological composition of lakes. One trophic cascade model predicts that the presence or absence of piscivorous fishes will affect the presence of planktivorous fishes, zooplankton size and abundance, algal biomass, and 1 subsequent water clarity (Fig. 1) (Carpenter et al., 1987). The trophic nature of lakes also affects animal behavior, such as the distribution patterns of zooplankton as a predator avoidance technique (Loose and Dawidowicz, 1994).
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • Halanaerobaculum Jean Luc Cayol
    Halanaerobaculum Jean Luc Cayol To cite this version: Jean Luc Cayol. Halanaerobaculum. Bergey’s Manual of Systematics of Archaea and Bacteria (BMSAB), Hoboken, New Jersey : Wiley, [2015]-, 2019, 10.1002/9781118960608.gbm01725. hal- 02883868 HAL Id: hal-02883868 https://hal.archives-ouvertes.fr/hal-02883868 Submitted on 29 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 gbm01725 2 3 Halanaerobaculum 4 5 Hedi, Fardeau, Sadfi, Boudabous, Ollivier and Cayol 2009, 317 VP 6 7 Jean-Luc Cayol 8 9 Aix Marseille Université, IRD, Université de Toulon, CNRS, Mediterranean Institute of 10 Oceanography (MIO), UM 110, 13288 Marseille cedex 9, France 11 12 Hal.an.ae.ro.ba’cu.lum. Gr. masc. n. hals, salt; Gr. pref. an, not; Gr. masc. or fem. n. aer, air; 13 L. neut. n. baculum, stick; N.L. neut. n. Halanaerobaculum, salt stick not living in air. 14 15 Abstract 16 The genus Halanaerobaculum comprises one species with validly published name, 17 Halanaerobaculum tunisiense, which was isolated from hypersaline surface sediments of El- 18 Djerid Chott, Tunisia. The genus is halophilic, strict anaerobic and chemoorganotrophic. The 19 genus Halanaerobaculum belongs to the family Halobacteroidaceae; order Halanaerobiales; 20 class Clostridia.
    [Show full text]
  • Town of Seneca
    TOWN OF BRISTOL Inventory of Land Use and Land Cover Prepared for: Ontario County Water Resources Council 20 Ontario Street, 3rd Floor Canandaigua, New York 14424 and Town of Bristol 6740 County Road 32 Canandaigua, New York 14424 Prepared by: Dr. Bruce Gilman Department of Environmental Conservation and Horticulture Finger Lakes Community College 3325 Marvin Sands Drive Canandaigua, New York 14424-8395 2020 Cover image: Ground level view of a perched swamp white oak forest community (S1S2) surrounding a shrub swamp that was discovered and documented on Johnson Hill north of Dugway Road. This forest community type is rare statewide and extremely rare locally, and harbors a unique assemblage of uncommon plant species. (Image by the Bruce Gilman). Acknowledgments: For over a decade, the Ontario County Planning Department has supported a working partnership between local towns and the Department of Environmental Conservation and Horticulture at Finger Lakes Community College that involves field research, ground truthing and digital mapping of natural land cover and cultural land use patterns. Previous studies have been completed for the Canandaigua Lake watershed, the southern Honeoye Valley, the Honeoye Lake watershed, the complete Towns of Canandaigua, Gorham, Richmond and Victor, and the woodlots, wetlands and riparian corridors in the Towns of Seneca, Phelps and Geneva. This report summarizes the latest land use/land cover study conducted in the Town of Bristol. The final report would not have been completed without the vital assistance of Terry Saxby of the Ontario County Planning Department. He is gratefully thanked for his assistance with landowner information, his patience as the fieldwork was slowly completed, and his noteworthy help transcribing the field maps to geographic information system (GIS) shape files.
    [Show full text]
  • A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis
    Microorganisms 2015, 3, 500-517; doi:10.3390/microorganisms3030500 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis Violetta La Cono 1, Erika Arcadi 1, Gina La Spada 1, Davide Barreca 2, Giuseppina Laganà 2, Ersilia Bellocco 2, Maurizio Catalfamo 1, Francesco Smedile 1, Enzo Messina 1, Laura Giuliano 1,3 and Michail M. Yakimov 1,* 1 Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina 98122, Italy; E-Mails: [email protected] (V.L.C.); [email protected] (E.A.); [email protected] (G.L.S.); [email protected] (M.C.); [email protected] (F.S.); [email protected] (E.M.); [email protected] (L.G.) 2 Department of Organic and Biological Chemistry, University of Messina, Salita Sperone 31, Villaggio S. Agata, Messina 98166, Italy; E-Mails: [email protected] (D.B.); [email protected] (G.L.); [email protected] (E.B.) 3 Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-090-6015-437. Academic Editors: Ricardo Amils and Elena González Toril Received: 1 July 2015 / Accepted: 1 September 2015 / Published: 9 September 2015 Abstract: Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Article Is Available Gen Availability
    Hydrol. Earth Syst. Sci., 23, 1763–1777, 2019 https://doi.org/10.5194/hess-23-1763-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Oxycline oscillations induced by internal waves in deep Lake Iseo Giulia Valerio1, Marco Pilotti1,4, Maximilian Peter Lau2,3, and Michael Hupfer2 1DICATAM, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy 2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany 3Université du Quebec à Montréal (UQAM), Department of Biological Sciences, Montréal, QC H2X 3Y7, Canada 4Civil & Environmental Engineering Department, Tufts University, Medford, MA 02155, USA Correspondence: Giulia Valerio ([email protected]) Received: 22 October 2018 – Discussion started: 23 October 2018 Revised: 20 February 2019 – Accepted: 12 March 2019 – Published: 2 April 2019 Abstract. Lake Iseo is undergoing a dramatic deoxygena- 1 Introduction tion of the hypolimnion, representing an emblematic exam- ple among the deep lakes of the pre-alpine area that are, to a different extent, undergoing reduced deep-water mixing. In Physical processes occurring at the sediment–water inter- the anoxic deep waters, the release and accumulation of re- face of lakes crucially control the fluxes of chemical com- duced substances and phosphorus from the sediments are a pounds across this boundary (Imboden and Wuest, 1995) major concern. Because the hydrodynamics of this lake was with severe implications for water quality. In stratified shown to be dominated by internal waves, in this study we in- lakes, the boundary-layer turbulence is primarily caused by vestigated, for the first time, the role of these oscillatory mo- wind-driven internal wave motions (Imberger, 1998).
    [Show full text]