Thesis, Anton Pannekoek Institute, Universiteit Van Amsterdam
Total Page:16
File Type:pdf, Size:1020Kb
UvA-DARE (Digital Academic Repository) The peculiar climates of ultra-hot Jupiters Arcangeli, J. Publication date 2020 Document Version Final published version License Other Link to publication Citation for published version (APA): Arcangeli, J. (2020). The peculiar climates of ultra-hot Jupiters. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:09 Oct 2021 Jacob Arcangeli of Ultra-hot Jupiters The peculiar climates The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli © 2020, Jacob Arcangeli Contact: [email protected] The peculiar climates of Ultra-hot Jupiters Thesis, Anton Pannekoek Institute, Universiteit van Amsterdam Cover by Imogen Arcangeli ([email protected]) Printed by Amsterdam University Press ANTON PANNEKOEK INSTITUTE The research included in this thesis was carried out at the Anton Pannekoek Institute for Astronomy (API) of the University of Amsterdam. This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 679633; Exo-Atmos). This work was also supported by the Amsterdam Academic Alliance (AAA) Program. The peculiar climates of Ultra-hot Jupiters ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op donderdag 15 oktober 2020, te 16:00 uur door Jacob Arcangeli geboren te Verona Promotiecommissie: Promotor(es): Prof. dr. C. Dominik Universiteit van Amsterdam Copromotor(es): dr. J. M. Désert Universiteit van Amsterdam Overige leden: dr. J. L. Birkby Universiteit van Amsterdam prof. dr. A. de Koter Universiteit van Amsterdam prof. dr. I. A. G. Snellen Universiteit Leiden dr. N. Madhusudhan Universiteit van Cambridge dr Y. Miguel Universiteit Leiden prof. dr. M. van der Klis Universiteit van Amsterdam prof. dr. A. L. Watts Universiteit van Amsterdam Faculteit der Natuurwetenschappen, Wiskunde en Informatica Contents 1 Introduction 1 1.1 Exoplanets .................................... 1 1.1.1 The Earth in Context .......................... 1 1.1.2 Exoplanet Diversity ........................... 1 1.1.3 Through the lens of atmospheres .................... 2 1.1.4 From formation to atmospheric properties ............... 3 1.1.5 Towards brighter stars ......................... 5 1.1.6 A new sub-class: the ultra hot Jupiters ................. 6 1.2 Observing Exoplanet Atmospheres ....................... 7 1.2.1 Transmission Spectroscopy ....................... 7 1.2.2 Emission Spectroscopy ......................... 8 1.2.3 Phase curves ............................... 9 1.2.4 Instrumentation ............................. 9 1.3 Properties of hot Jupiter atmospheres ..................... 12 1.3.1 Atmospheric Chemistry ......................... 12 1.3.2 Temperature Structure ......................... 13 1.3.3 Dynamics & Climate .......................... 13 1.3.4 Atmospheric Modelling ......................... 15 1.4 New Climates: Ultra hot Jupiters ........................ 16 1.4.1 From hot to ultra hot atmospheres ................... 16 1.4.2 Challenging Models ........................... 17 1.4.3 Dayside Chemistry ........................... 19 1.4.4 Nightside & Climate ........................... 20 1.4.5 Two archetypes of UHJs ........................ 20 1.5 Thesis Outline .................................. 21 2 H- Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b 23 2.1 Introduction ................................... 24 2.2 Observations and Data Reduction ....................... 25 2.2.1 Observations ............................... 25 2.2.2 Data reduction and analysis ...................... 25 vi Contents 2.3 Results & Discussion .............................. 26 2.3.1 Fitting a blackbody spectrum ...................... 26 2.3.2 Opacity sources in very hot gas giant exoplanet atmospheres .... 26 − 2.3.3 Atmospheric modelling including H opacities and molecular disso- ciation .................................. 29 2.3.4 WASP-18 b’s atmospheric metallicity,composition, and thermal structure 31 2.4 Consequences for the family of very hot giant exoplanets ........... 33 3 Climate of an Ultra Hot Jupiter: Spectroscopic phase curve of WASP-18b with HST/WFC3 35 3.1 Introduction ................................... 36 3.2 Observations and Data Reduction ....................... 38 3.2.1 Observations ............................... 38 3.2.2 Systematics correction ......................... 38 3.2.3 Estimation of Errors ........................... 42 3.3 Results ...................................... 43 3.3.1 Observed phase-curve properties .................... 43 3.3.2 Ellipsoidal variations .......................... 43 3.4 Comparing the phase curve of WASP-18b to Global Circulation Models ... 45 3.4.1 Global Circulation Models ....................... 45 3.4.2 Comparison of GCMs to data ...................... 48 3.5 Discussion .................................... 49 3.5.1 Drag in Global Circulation Models ................... 49 3.5.2 Effect of a planetary magnetic field .................. 51 3.5.3 Effect of Atmospheric Metallicity on the phase curve of WASP-18b .. 53 3.5.4 Constraints on the Redistribution .................... 54 3.5.5 Comparison of two Ultra hot Jupiters ................. 54 3.6 Conclusions ................................... 56 3.7 Appendix .................................... 58 4 A new approach to spectroscopic phase curves: The emission spectrum of WASP-12b observed in quadrature with HST/WFC3 61 4.1 Introduction ................................... 62 4.2 Data and Methods ................................ 63 4.2.1 HST Data ................................ 63 4.2.2 Method ................................. 64 4.2.3 Comparison to classical eclipse spectroscopy ............. 65 4.2.4 Pointing Offsets ............................. 67 4.2.5 Residual Noise .............................. 70 4.2.6 Dilution Correction ........................... 70 4.2.7 Stellar Variability ............................ 71 4.3 Results ...................................... 71 4.3.1 Extracted Emission Spectra ....................... 71 Contents vii 4.3.2 Comparison to models ......................... 72 4.3.3 Comparison to dayside emission studies ................ 72 4.4 Discussion .................................... 73 4.4.1 Emission spectra of WASP-12b compared to circulation models ... 73 4.4.2 Comparison to Spitzer phase-curves of WASP-12b ........... 77 4.4.3 Pointing Stability between visits .................... 79 4.4.4 Partial phase curves in the future with HST, JWST, and other spectro- scopic space facilities .......................... 79 4.5 Conclusions ................................... 80 4.6 Appendix .................................... 82 5 The brightness temperature of the nightside of WASP-18b 85 5.1 Introduction ................................... 86 5.2 Data and Methods ................................ 88 5.2.1 Data ................................... 88 5.2.2 Time dependent systematics correction ................ 88 5.2.3 Wavelength dependent systematics correction ............. 88 5.2.4 Testing the corrections and Noise level ................. 90 5.3 Results ...................................... 90 5.3.1 Measuring brightness temperatures .................. 90 5.3.2 Dayside emission spectra ........................ 91 5.3.3 Thermal phase curve .......................... 91 5.3.4 Nightside emission spectrum ...................... 92 5.3.5 Propagation of uncertainties ...................... 92 5.4 Discussion .................................... 93 5.4.1 Comparison to previous results ..................... 93 5.4.2 Global energy budget .......................... 94 5.4.3 Implications for the planet’s atmosphere ................ 95 Bibliography 101 Publications 119 Nederlandse samenvatting 121 Acknowledgements 123 Chapter 1 Introduction 1.1 Exoplanets 1.1.1 The Earth in Context One of the ultimate goals of the exoplanet field is to understand life in the universe. Earth is a difficult starting place for this problem: We are familiar with Earth as the only planet known to host life, but we can’t know yet whether life is an unusual or common occurrence. To begin with we would like to know if Earth-like planets are commonly formed around other stars, and then whether any of these planets would have the right properties and conditions for life, such as water and a temperate climate. These are the key questions of exoplanet