Superflares and Giant Planets

Total Page:16

File Type:pdf, Size:1020Kb

Superflares and Giant Planets Superflares and Giant Planets From time to time, a few sunlike stars produce gargantuan outbursts. Large planets in tight orbits might account for these eruptions Eric P. Rubenstein nvision a pale blue planet, not un- bushes to burst into flames. Nor will the lar flares, which typically last a fraction Elike the Earth, orbiting a yellow star surface of the planet feel the blast of ul- of an hour and release their energy in a in some distant corner of the Galaxy. traviolet light and x rays, which will be combination of charged particles, ul- This exercise need not challenge the absorbed high in the atmosphere. But traviolet light and x rays. Thankfully, imagination. After all, astronomers the more energetic component of these this radiation does not reach danger- have now uncovered some 50 “extra- x rays and the charged particles that fol- ous levels at the surface of the Earth: solar” planets (albeit giant ones). Now low them are going to create havoc The terrestrial magnetic field easily de- suppose for a moment something less when they strike air molecules and trig- flects the charged particles, the upper likely: that this planet teems with life ger the production of nitrogen oxides, atmosphere screens out the x rays, and and is, perhaps, populated by intelli- which rapidly destroy ozone. the stratospheric ozone layer absorbs gent beings, ones who enjoy looking So in the space of a few days the pro- most of the ultraviolet light. So solar up at the sky from time to time. tective blanket of ozone around this flares, even the largest ones, normally During the day, these creatures planet will largely disintegrate, allow- pass uneventfully. People living at high would see their sun shining brightly, ing ultraviolet light to rain down latitudes may see unusually intense providing them with an almost constant unimpeded. Until this shield is re- auroral displays. But unless an espe- bath of warming rays. At night they stored, a process that might take cially strong flare knocks out a com- might gaze at a moon or two against a decades, daylight will remain deadly munication satellite or a power grid, backdrop of seemingly unchanging to the organisms exposed to it. few people take much notice. stars. Over the billions of years since life Fortunately, our Sun does not ap- first evolved on this hypothetical planet, pear prone to such disastrous explo- Inconstant Suns this world has been spared any cosmic sions. Indeed, it produces a remarkably Not all stars shine as steadily as the catastrophes. No nearby supernovae steady output of energy—the value of Sun. Some change in brightness over a have exploded. The orbit of the planet which is duly named the solar con- period of hours, days or months. As- has stayed circular. And no great aster- stant. Sensitive instruments placed on tronomers are fascinated by such vari- oids have come crashing down. In satellites show that it varies by only a able stars, and groups of observers have short, none of the many celestial events few parts in a thousand. Astrophysi- organized specifically to examine that would threaten life here have hap- cists do, however, surmise that the so- them. Fortunately for those of us inter- pened. But today is a bad day. lar constant is slowly increasing, by ested in such curious stars, there is an A stellar flare, enormous by normal about one percent each 300 million uncountable number of them. standards, erupts from the surface of years. Over the 4.6 billion years since Astronomers classify these variable the parent star, giving off a sudden the solar system formed, the Sun has stars according to their properties. So- burst of radiation and spewing into brightened by about 40 percent. Al- called geometric variables do not actually space a fusillade of charged particles. though this variation is substantial, it change the amount of energy they give Although it will startle the inhabitants, has taken place so gradually that off. Rather, the geometry of viewing the sudden heat wave will not cause changes in the amount of heat-trap- these multiple star systems causes us ping gases in the atmosphere have to see different amounts of light at dif- compensated, allowing the tempera- ferent times. In most cases the varia- Eric P. Rubenstein received a Ph.D. in astronomy ture of the Earth to remain relatively tion arises because one star in a binary from Yale University in 1997. He remained there steady—and in a range that keeps wa- system passes in front of the other. for two years before becoming a National Science ter liquid—for billions of years. Such eclipses are most likely to be seen Foundation International Research Fellow and Life on Earth clearly benefits from if the two stars revolve around each starting work at the Cerro Tololo Inter-American Observatory in Chile. Last summer he returned to this long-term stability and from the other in a tight orbit. Interestingly, such Yale as a lecturer in the Department of Astronomy. Sun having only moderate levels of binaries, ones with small separations Address: Yale University, Department of Astrono- what astronomers refer to as “activity,” between the stars, commonly exhibit my, P.O. Box 208101, New Haven, CT 06520- meaning violent outbursts. In large additional kinds of variability. Tidal in- 8101. Internet: [email protected] part, this activity manifests itself as so- teractions cause these closely spaced 38 American Scientist, Volume 89 Copyright © 2001 American Scientist Figure 1. Artistic rendition of a distant, sunlike star undergoing a “superflare” hints at the enormity of such an event. These huge eruptions dwarf the largest flares on the Sun, releasing from 100 to 10 million times as much energy. The author proposes that giant planets orbiting close to such stars trigger these occasional outpourings. (Image courtesy of the author.) Copyright © 2001 American Scientist 2001 January–February 39 stars to spin rapidly, which in turn galaxy. Other examples of this class in- range from several seconds to hun- greatly enhances their magnetic fields, clude binary star systems in which a dreds of days. Some vary in brightness causing strong stellar flares. As- compact white dwarf pulls in hydrogen by more than an order of magnitude. tronomers call such flaring chromos- from its nearby partner. From time to Astrophysicists have determined that pheric activity, because the energy time the rain of gas gives rise to huge such changes result from instabilities comes from the portion of the stellar thermonuclear explosions on the sur- in either the rate of energy generation atmosphere that also gives the star its face of the white dwarf. Such systems, or in the relationship between temper- characteristic color. dubbed cataclysmic variables, typically ature and opacity in the stellar atmos- Even more spectacular are the erup- experience repeated explosions, so the phere. Pulsators are usually periodic, tive variables, which include super- term “cataclysmic” is not really apt. although some have multiple period- novae—stars that end their lives by ex- Skywatchers also recognize pulsating icities superposed. ploding so violently that they can variables, which alternately increase So variable stars are themselves a outshine all the other stars in their and decrease in size over intervals that varied lot—and a well-studied one. In- deed, astronomers have prided them- 1 Algol selves in their understanding of the mechanisms that bring about these changes. Conversely, we generally be- lieved that we could predict which stars would be as stable as the Sun. We have traditionally assumed, for instance, that if a star has roughly the same surface temperature and luminosity as the Sun, relative brightness relative is a single star and rotates at a speed similar to that of the Sun, it will likewise 0 023451 have only modest levels of chromos- days pheric activity. Such stars are commonly called solar analogues. The unspoken as- 1 SS Cygni sumption that all solar analogues are, in essence, interchangeable underlies much of the thinking about habitable worlds, and perhaps life, existing else- where in the cosmos. Although it seems reasonable that solar analogues should be as stable as the Sun, it is clear that this assumption relative brightness relative was premature—and wrong. Astron- omers now know of nine instances of 0 0 24 6810 12 these sunlike stars having eruptions months that were from 100 to 10 million times 1.5 more energetic than the most powerful 1 Sun per square meter) (kilowatts solar flares. In these cases the stars tem- brightness porarily brightened by amounts that range from several percent up to a fac- Chi Cygni solar flux 1.0 solar flux tor of 10 or more. Startling as they would be for some- one living nearby, giant flares around 0.5 distant stars can easily elude us earth- lings. For the most part, the sightings relative brightness relative of these events were simply fortuitous. One set of observations was, for ex- 0 0 ample, made on March 6, 1899, when 1980 1985 1990 1995 2000 a newly discovered comet passed years through the constellation Fornax and entered the part of the sky that contains Figure 2. Many variable stars exhibit characteristic patterns of changing brightness, which a star called S Fornacis. Four experi- can reveal much about their nature. The star Algol (Beta Persei), for example, shows a repeti- enced and highly respected observers tive pattern of short-lived diminutions in brightness (top). Astronomers regard Algol as a went out early that evening to view the “geometric variable” because the changes in brightness result from the viewing geometry, which allows each star in this binary system to periodically eclipse the other.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • 195 9Mnras.119. .255E Stellar Groups, Iv. the Groombridge
    STELLAR GROUPS, IV. THE GROOMBRIDGE 1830 GROUP OF .255E HIGH VELOCITY STARS AND ITS RELATION TO THE GLOBULAR CLUSTERS 9MNRAS.119. Olm J. Eggen and Allan R. Sondage 195 (Communicated by the Astronomer Royal) (Received 1959 March 4) Summary The available proper motions and radial velocity data have been used to establish the existence of a moving group of subdwarfs (Groombridge 1830 ¿roup) which includes RR Lyrae. On the basis of the relationship between the observed ultra-violet excess and displacement below the normal main sequence, the subdwarfs in the Groombridge 1830 group are identified with main sequence stars in the globular clusters. This identification gives a modulus of m — M= i4m-2 for the globular cluster M13 with the result that ikTp-~ + om*5 for the z RR Lyrae variables and My= — 2m*3 for the brightest stars in the cluster. RR Lyrae itself, for which we derive ikfp~ + om*8 from the moving cluster parallax, is shown to obey the period-amplitude relation for the variables in M3 and to be reddened by om*o5 with respect to those variables. By equating the luminosity of RR Lyrae to the mean of the variables in M3 we obtain a modulus of m — M= i5m-o for the cluster. We have not derived this modulus in the logical way of fitting the M3 main sequence to the main sequence of the Groombridge 1830 group because the colour observations of the M3 main sequence stars may contain a systematic error. Because the presence of RR Lyrae variables in stellar groups may provide the only accurate calibration of the luminosities of these stars, it is important to make a systematic search for such groups.
    [Show full text]
  • Download the Search for New Planets
    “VITAL ARTICLES ON SCIENCE/CREATION” September 1999 Impact #315 THE SEARCH FOR NEW PLANETS by Don DeYoung, Ph.D.* The nine solar system planets, from Mercury to Pluto, have been much-studied targets of the space age. In general, a planet is any massive object which orbits a star, in our case, the Sun. Some have questioned the status of Pluto, mainly because of its small size, but it remains a full-fledged planet. There is little evidence for additional solar planets beyond Pluto. Instead, attention has turned to extrasolar planets which may circle other stars. Intense competition has arisen among astronomers to detect such objects. Success insures media attention, journal publication, and continued research funding. The Interest in Planets Just one word explains the intense interest in new planets—life. Many scientists are convinced that we are not alone in space. Since life evolved on Earth, it must likewise have happened elsewhere, either on planets or their moons. The naïve assumption is that life will arise if we “just add water”: Earth-like planet + water → spontaneous life This equation is falsified by over a century of biological research showing the deep complexity of life. Scarcely is there a fact more certain than that matter does not spring into life on its own. Drake Equation Astronomer Frank Drake pioneered the Search for ExtraTerrestrial Intelligence project, or SETI, in the 1960s. He also attempted to calculate the total number of planets with life. The Drake Equation in simplified form is: Total livable Probability of Planets with planets x evolution = evolved life *Don DeYoung, Ph.D., is an Adjunct Professor of Physics at ICR.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The Exoplanet-Host Star Ι Horologii: an Evaporated Member of the Primordial Hyades Cluster
    A&A 482, L5–L8 (2008) Astronomy DOI: 10.1051/0004-6361:20079342 & c ESO 2008 Astrophysics Letter to the Editor The exoplanet-host star ι Horologii: an evaporated member of the primordial Hyades cluster S. Vauclair1,M.Laymand1, F. Bouchy2, G. Vauclair1,A.HuiBonHoa1, S. Charpinet1, and M. Bazot3 1 Laboratoire d’Astrophysique de Toulouse-Tarbes, CNRS, Université de Toulouse, 14 Av. Ed. Belin, 31400 Toulouse, France e-mail: [email protected] 2 Institut d’Astrophysique de Paris, 75014 Paris, France 3 Centro de Astrophysica da Universidade do Porto, Porto, Portugal Received 30 December 2007 / Accepted 4 March 2008 ABSTRACT Aims. We show that the exoplanet-host star iota Horologii, alias HD 17051, which belongs to the so-called Hyades stream, was formed within the primordial Hyades stellar cluster and has evaporated towards its present location, 40 pc away. Methods. This result has been obtained unambiguously by studying the acoustic oscillations of this star, using the HARPS spectrom- eter in La Silla Observatory (ESO, Chili). Results. Besides the fact that ι Hor belongs to the Hyades stream, we give evidence that it has the same metallicity, helium abun- dance, and age as the other stars of the Hyades cluster. They were formed together, at the same time, in the same primordial cloud. Conclusions. This result has strong implications for theories of stellar formation. It also indicates that the observed overmetallicity of this exoplanet-host star, about twice that of the Sun, is original and not caused by planet accretion during the formation of the planetary system. Key words.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • 400 Years of Women in Science Review by Andrew W
    National Capital Astronomers, Inc. Phone: 301/565-3709 Volume 56, Number I September, 1997 ISSN 0898-7548 A biography Alan P. Boss is a staff member at the Carnegie Institution of Washington's Department of Terrestrial Magnetism Abstract highly eccentric orbits are a clue to their (DTM) in northwest Washington, D.C. Searches for extrasolar planets and origin as stars rather than as planets. Boss received his Ph.D. in physics from brown dwarfs have a long and dismal Giant planets must form in the relatively the University of California, Santa Bar- history. HowevAr r"-of discoveries cool, outer regions of protoplanetary bara, in 1979. He spent two years as a have . the advent of an era of disks, which is why the discovery of postdoctoral fellow at NASA's Ames ~ ..----tfi'SCovery of extrasolar planetary sys- several giant planets with circular orbits Reseach Center in California before tems. The newly discovered objects ap- very close to their central stars was a joining the staff ofDTM in 1981. Boss's pear to be a mixture of gas giant planets, shock to theorists. These discoveries research focuses on using three dimen- similar to Jupiter, and brown dwarf have forced theorists to accept the fact sional hydrodynamics codes to model stars, elusive objects that have long been that some planets must migrate inwards the formation of stars and planetary sys- hypothesized to exist but never seen from their place of birth toward their tems. He has been helping NASA plan before. Brown dwarf stars are interme- central star. This inward migration ap- its search for extrasolar planets ever diate in mass between giant planets and pears to have been negligible for our since 1988, and continues to be acti ve in the lowest mass stars that can burn hy- solar system, however.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:2101.02901V2 [Astro-Ph.SR] 30 Jan 2021 Can Generate Superflares to Deeply and Statistically Understanding Superflare Uniqueness Compared with Solar flares
    Draft version February 2, 2021 Typeset using LATEX default style in AASTeX62 Superflares, chromospheric activities and photometric variabilities of solar-type stars from the second-year observation of TESS and spectra of LAMOST Zuo-Lin Tu,1 Ming Yang,1, 2 H.-F. Wang,3, 4 and F. Y. Wang1, 2 1School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China 2Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China 3South−Western Institute for Astronomy Research, Yunnan University, Kunming, 650500, P. R. China 4LAMOST Fellow ABSTRACT In this work, 1272 superflares on 311 stars are collected from 22,539 solar-type stars from the second- year observation of Transiting Exoplanet Survey Satellite (TESS), which almost covered the northern hemisphere of the sky. Three superflare stars contain hot Jupiter candidates or ultrashort-period planet candidates. We obtain γ = −1:76 ± 0:11 of the correlation between flare frequency and flare energy (dN=dE / E−γ ) for all superflares and get β = 0:42±0:01 of the correlation between superflare duration β and energy (Tduration / E ), which supports that a similar mechanism is shared by stellar superflares and solar flares. Stellar photometric variability (Rvar) is estimated for all solar-type stars, and the 3=2 relation of E / Rvar is included. An indicator of chromospheric activity (S-index) is obtained by using data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) for 7454 solar-type stars. Distributions of these two properties indicate that the Sun is generally less active than superflare stars.
    [Show full text]
  • Have Pictures of the Constellations (Cygnus, Perseus, Corona Borelis, Cassiopeia, Orion, Big Dipper, and Virgo) on the Seminary Tables in Front
    1. Gathering Activity : Have pictures of the constellations (Cygnus, Perseus, Corona Borelis, Cassiopeia, Orion, Big Dipper, and Virgo) on the seminary tables in front. Give each YW a chance to identify the constellation on a piece of paper. 2. Introduction : Before cell phones, GPS, satellites, or even maps, people navigated the globe by looking up to the heavens. Star constellations that we can see tonight have been around since before Christ’s birth. They have been a light and a standard to help people find their way home. This year the Mutual theme comes from Doctrine and Covenants 115:5 “Arise and shine forth that thy light may be a standard for the nations.” As children of God, we are being asked to be a standard, a light for people to find their way back to their Heavenly Father. Tonight as we introduce the YW program we are going to use stars and constellation to help teach and guide you about the Young Women’s program. 3. Young Women Motto and Logo: Just as stars shine brightly in the night time sky, the Young Women’s logo is a torch burning brightly. It is surrounded by the Young Woman Motto: “Stand for Truth and Righteousness”. The Moto invites all young women to make a commitment to hold up their light by being an example and remaining worthy to make and keep sacred covenants and receive the ordinances of the temple. When I think of the Young Woman’s motto, it makes me think of _____________________________________________________. 4. Young Women Theme/ Values Constellations were created to bring order to the night time chaos in the heavens.
    [Show full text]
  • CONSTELLATION BOÖTES, the HERDSMAN Boötes Is the Cultivator Or Ploughman Who Drives the Bears, Ursa Major and Ursa Minor Around the Pole Star Polaris
    CONSTELLATION BOÖTES, THE HERDSMAN Boötes is the cultivator or Ploughman who drives the Bears, Ursa Major and Ursa Minor around the Pole Star Polaris. The bears, tied to the Polar Axis, are pulling a plough behind them, tilling the heavenly fields "in order that the rotations of the heavens should never cease". It is said that Boötes invented the plough to enable mankind to better till the ground and as such, perhaps, immortalizes the transition from a nomadic life to settled agriculture in the ancient world. This pleased Ceres, the Goddess of Agriculture, so much that she asked Jupiter to place Boötes amongst the stars as a token of gratitude. Boötes was first catalogued by the Greek astronomer Ptolemy in the 2nd century and is home to Arcturus, the third individual brightest star in the night sky, after Sirius in Canis Major and Canopus in Carina constellation. It is a constellation of large extent, stretching from Draco to Virgo, nearly 50° in declination, and 30° in right ascension, and contains 85 naked-eye stars according to Argelander. The constellation exhibits better than most constellations the character assigned to it. One can readily picture to one's self the figure of a Herdsman with upraised arm driving the Greater Bear before him. FACTS, LOCATION & MAP • The neighbouring constellations are Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo, and Ursa Major. • Boötes has 10 stars with known planets and does not contain any Messier objects. • The brightest star in the constellation is Arcturus, Alpha Boötis, which is also the third brightest star in the night sky.
    [Show full text]