A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra

Total Page:16

File Type:pdf, Size:1020Kb

A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars. I present an observational reconnaissance of the atmospheres of terrestrial exoplanets orbiting nearby, low-mass stars, opening the door for an atmospheric branch of comparative terrestrial planetology. I studied three worlds, LHS 3844b, GJ 1132b, and LHS 1140b, which have equilibrium temperatures of 805 K, 580 K, and 235 K, respectively. All three planets transit stars with masses less than 20% the mass of the Sun, and lying within 15 parsecs. I employed the technique of ground-based transmission spectroscopy using the Low Dispersion Survey Spectrograph (LDSS3C) on the Magellan Clay Telescope at the Las Campanas Observatory in Chile. To observe transits of LHS 1140b I used the the Inamori-Magellan Areal Camera & Spectro- graph (IMACS) on the Magellan Baade Telescope concurrently with LDSS3C. I searched for chromatic differences in the amount of light attenuated as the planets transited across their host stars. I disfavored cloudless, hydrogen- and helium-dominated atmospheres on LHS 3844b to 5.5s confidence, and on GJ 1132b to 3.7s confidence. I disfavored cloudless, water steam atmospheres to 3.5s confidence on both LHS 3844b and GJ 1132b. The cool equilibrium temperature and high surface gravity of LHS 1140b render any atmosphere around this world below my detection limits. iii Planetary atmospheres are sculpted and in some cases removed by the high-energy radiation from their host stars. Low-mass stars spend an extended amount of time in the highly-active pre-main sequence phase compared to Sun-like stars. It is not known if ter- restrial planets orbiting low-mass stars can maintain atmospheres at all, let alone provide hospitable conditions for abiogenesis. To unite my constraints on terrestrial exoplanet atmospheres with the influence of their low-mass stellar hosts I present a first look at the ultra-violet spectrum of LHS 3844 taken with the Cosmic Origins Spectrograph on the Hubble Space Telescope. I detected prominent emission lines in the ultra-violet spectrum of LHS 3844, and used them to estimate the Lyman-a and extreme ultra-violet luminos- ity. These data will inform models of atmospheric photochemistry on LHS 3844b and constrain rates of atmospheric escape from this world. My reconnaissance of the atmospheres of several terrestrial exoplanets excluded low mean molecular weight atmospheric cases around these worlds, and pushed current in- strumentation to its limits. The pursuit of thin, secondary atmospheres similar to those on Venus and Earth must await future facilities, notably the James Webb Space Telescope and the ground-based giant segmented-mirror telescopes. Detections of terrestrial exoplanet atmospheres, in conjunction with studies of the high-energy stellar flux they encounter, will allow us to place the terrestrial worlds of the Solar System in the context of terrestrial planets as a whole. iv ACKNOWLEDGEMENTS This has been a long trek on a bumpy trail, and I could not have reached the summit with- out the support, advice, love, and tough love from my family, friends, and community. First and foremost, to my advisor Dave, who read every word of my papers, proposals, conference abstracts, and this thesis, thank you for your mentorship. Your patience and insight have made me the scientist I am today, and that is something I can be proud of. A big thank you to my committee members, Dimitar, Mercedes, and Robin, whose varied expertise has strengthened this work, and to David Sing for serving as my external reader. Thank you to Jacob and Dorian, my college advisors. Thank you to the extended MEarth team who I have gotten to know over the years, Jonathan, Jen, Raphie, Jayne, Laura K., Caroline, Laura M., Joey, Suri, Ryan, Amber, Nick, Juli, Kristo, Adrianna, and Emily, I’m glad we will never again have to meet at House of Chang, but I will miss the group conversations. To the broader Center for Astrophysics community, who keep the science, the servers, and the building running, thank you for making the CfA a warm and functioning place to work, even as a pandemic keeps us home. Christine, a very special thank you to you for being my administrative rock, for making sure I got reimbursed at lightning speed, and for sharing where to get the best Mai Tais. I have to thank some incredible friends who have been around through this process. To the past and present residents of 12 Lawrence, my grad school home, Oliver, Ali, Jas- mine, Cassandra, Katie, Allison, Molly, and Christina, thank you for every late night con- versation, every walk to the store, and of course all the backyard barbecues and holiday parties. I learned so much from all of you, and I’m so glad our paths crossed in a creaky old Cambridgeport house. Laura, thank you first for being a friend and confidant, and second for being a top- shelf astronomer. You amaze me always and I’m going to miss not working across the hall, or a floor down from you. Adrien, my oldest friend, thank you for visiting me and keeping our friendship going, now 20 years strong and counting. Erik, Sam, Jay, and Mike, from France to Norway to Chile and both coasts, we’ve been on some great (mis)adventures. Let’s do it again sometime. Zoe, my best friend, most things we talk about I probably can’t write in a Harvard thesis, so I’ll just say, I can’t wait until the next time we can sit out in the sunshine with some white wine and talk until the sun goes down. And then go to Van Kleef. v Dan, it turns out I leaned on you more than I ever thought I would. Thank you for the day-to-day support while I finished this thesis, and for all the music, laughter, and Miller High Life a girl could want. I’m looking forward to our next adventure. Amber, I could double the length of this thesis with how many thank yous I have for you. Imagine? I’d calculate how many hours we’ve spent together over the last five years but I’d need you to do it with me on the whiteboard and we’re not allowed in our office right now. And let’s face it, it would take us like all day to work out. For all I learned about astronomy, I learned just as much about New Mexico, pecans, the whole Medina family, and your work-out regimen. Te quiero mucho chica. And finally the biggest thank you to my family. Mom and Dad, you showed me the world from day one, and you remain my fiercest supporters to this day. I am so lucky to have such cool parents. To the Diamonds — Grandma Randa, Aunt Celia, Uncle Jon, Aunt Val, Dave, Caryn, Phillip, Eve, and Noah, it is always such a treat to visit with you, whether it’s in California, Hawai’i, or Ohio. To the Chicago Diamonds, Linda, Mark, Sam, and Michael, thank you for giving me a home away from home during my college years. To the Lowes — Uncle Brian, Aunt Mary, Nick, Alexa, Liz, Tim, Miles, and Una, it’s always a good time when we get to hang out and see some art. To my extended Highland Park family, Wendy, Colin, Olivia, and Eliot, thank you for being a part of my life since the Plainfield days. To Jill and Stacy, traveling with you in Ireland is still one of my favorite vacations, and I hope we can make it happen again. And of course to Auntie Wen, Uncle Ron, and Mischa, thank you for making every Hanukkah my favorite holiday celebration. I could not ask for a more talented, more intelligent, or kinder extended family, and I love you all so much. vi Contents Copyright ii Abstract iii Acknowledgementsv List of figures xi List of tables xii 1 Introduction1 1.1 What is a terrestrial exoplanet?..........................1 1.2 Small planets: terrestrial planet vs. enveloped terrestrial planet.......3 1.2.1 What causes the small planet radius valley?..............6 1.2.2 Secondary atmospheres on terrestrial planets..............9 1.3 M dwarfs as terrestrial exoplanet hosts.....................
Recommended publications
  • The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P
    The Planetary Systems Imager for TMT Astro2020 APC White Paper Optical and Infrared Observations from the Ground Corresponding Author: Michael P. Fitzgerald (University of California, Los Angeles; mpfi[email protected]) Co-authors: Diego) Vanessa Bailey (Jet Propulsion Laboratory) Takayuki Kotani (Astrobiology Center/NAOJ) Christoph Baranec (University of Hawaii) David Lafreniere` (Universite´ de Montreal)´ Natasha Batalha (University of California Santa Michael Liu (University of Hawaii) Cruz) Julien Lozi (Subaru) Bjorn¨ Benneke (Universite´ de Montreal)´ Jessica R. Lu (University of California, Berkeley) Charles Beichman (California Institute of Jared Males (University of Arizona) Technology) Mark Marley (NASA Ames Research Center) Timothy Brandt (University of California, Santa Christian Marois (NRC Canada) Barbara) Dimitri Mawet (California Institute of Jeffrey Chilcote (Notre Dame) Technology/JPL) Mark Chun (University of Hawaii) Benjamin Mazin (University of California Santa Ian Crossfield (MIT) Barbara) Thayne Currie (NASA Ames Research Center) Maxwell Millar-Blanchaer (Jet Propulsion Kristina Davis (University of California Santa Laboratory) Barbara) Soumen Mondal (SN Bose National Centre for Richard Dekany (California Institute of Technology) Basic Sciences) Jacques-Robert Delorme (California Institute of Naoshi Murakami (Hokkaido University) Technology) Ruth Murray-Clay (University of California, Santa Ruobing Dong (University of Victoria) Cruz) Rene Doyon (Universite´ de Montreal)´ Norio Narita (Astrobiology Center) Courtney Dressing
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Arxiv:1804.07377V1 [Astro-Ph.SR] 19 Apr 2018
    submitted to The Astronomical Journal 20 April 2018 The Solar Neighborhood XLIV: RECONS Discoveries within 10 Parsecs Todd J. Henry1;8, Wei-Chun Jao2;8, Jennifer G. Winters3;8, Sergio B. Dieterich4;8, Charlie T. Finch5;8, Philip A. Ianna1;8, Adric R. Riedel6;8, Michele L. Silverstein2;8, John P. Subasavage7;8, Eliot Halley Vrijmoet2 1RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] ABSTRACT arXiv:1804.07377v1 [astro-ph.SR] 19 Apr 2018 We describe the 44 systems discovered to be within 10 parsecs of the Sun by the RECONS team, primarily via the long-term astrometry program at CTIO that began in 1999. The systems | including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf | have been found to have trigonometric parallaxes 8Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under contract to the National Science Foundation. { 2 { greater than 100 milliarcseconds (mas), with errors of 0.4{2.4 mas in all but one case.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Greenhouse Gases
    ClimateClimate onon terrestrialterrestrial planetsplanets H. Rauer Zentrum für Astronomie und Astrophysik, TU Berlin und Institut für Planetenforschung, DLR, Berlin-Adlershof Terrestrial Planets with Atmospheres in our Solar System Venus Earth Mars T = 735 K T = 288 K T = 216 K p = 90 bar p = 1 bar p = 0.007 bar Atmosphere: Atmosphere: Atmosphere: 96% CO2 77% N2 95% CO2 3,5 % N2 21 % O2 2,7 % N2 1 % H2O WhatWhatare aret thehe relevant relevant processesprocesses forfora a stablestablec climate?limate? AA stablestable climate climate needsneeds a a stablestable atmosphere!atmosphere! Three ways to gain a (secondary) atmosphere Ways to loose an atmosphere Could also be a gain Die Fluchtgeschwindigkeit Ep = -GmM/R 2 Ekl= 1/2mv Für Ek<Ep wird das Molekül zurückkehren Für Ek≥Ep wird das Molekül die Atmosphäre verlassen Die kleinst möglichste Geschwindigkeit, die für das Verlassen notwendig ist hat das Molekül für den Fall: Ek+Ep=0 2 1/2mve -GMm/R=0 ve=√(2GM/R) Thermischer Verlust (Jeans Escape) Einzelne Moleküle können von der obersten Schicht der Atmosphäre entweichen, wenn sie genügend Energie besitzen Die Moleküle folgen einer Maxwell-Boltzmann Verteilung: Mittlere quadratische Geschwindigkeit: v=√(2kT/m) Large escape velocities for the giants and ice planets Mars escape velocity is ~½ ve(Earth) - gas giants are massive enough to keep H-He-atmospheres - terrestrial planets atmospheres can have CO2, N2, O2, CH4, H2O, …, but little H and He Additional loss processes are important: Planets with magnetosphere are generally better protected from
    [Show full text]
  • The Earth and Its Atmosphere (Introduction) What, Why, and How???
    The Earth and Its Atmosphere (Introduction) What, Why, and How??? What is an Why do planets atmosphere? have atmospheres? What determines the yearly weather cycle? Why is the weather What is the different every year? structure of the Earth’s atmosphere? How was the Earth’s What is the atmosphere formed? Why do we study composition the atmosphere? of the Earth’s atmosphere? What processes determine How different are the daily variations in the the atmospheres of atmosphere? Are they other planets? predictable? What is an atmosphere? • A gaseous envelope surrounding a planet (satellite, comet…). • It is very, very thin compared to the size of the planet Why do planets have atmospheres? Gravity !!! PressurePressure !!!!!! Origin of the Atmosphere (How is an atmosphere formed?) • The early atmosphere of the Earth was very different from the atmosphere today! • Stage I (Primordial Atmosphere): ♦ Acquired by gravitational attraction of volatile gases from the proto planetary nebula of the Sun ♦ Consisted mostly of H2 and He ♦ Small and warm planets (Earth, Mars, Venus, Mercury) lost this atmosphere because the gravity is not strong enough to keep the light hot gases from escaping the planet. ♦ The composition of the atmosphere of the giant planets (Jupiter, Saturn, Uranus and Neptune) today is very close to their primordial atmosphere (why?). The Secondary Atmosphere • Stage II ♦ Outgassing of the terrestrial type planets during the early stages of their geological history. Volcanoes, geysers, cracks, … ♦ Most abundant gasses: H2O, CO2, SO2, H2S, CO ♦ Recall: radon mitigation ♦ On the Earth H2O condensed, formed clouds and rained out to form oceans. ♦ On the Earth most of the abundant gasses then dissolved in the ocean, leaving N2 as the dominant gas.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Imaging the Dynamical Atmosphere of the Red Supergiant Betelgeuse in the CO first Overtone Lines with VLTI/AMBER,
    A&A 529, A163 (2011) Astronomy DOI: 10.1051/0004-6361/201016279 & c ESO 2011 Astrophysics Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER, K. Ohnaka1,G.Weigelt1,F.Millour1,2, K.-H. Hofmann1, T. Driebe1,3, D. Schertl1,A.Chelli4, F. Massi5,R.Petrov2,andPh.Stee2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 Observatoire de la Côte d’Azur, Departement FIZEAU, Boulevard de l’Observatoire, BP 4229, 06304 Nice Cedex 4, France 3 Deutsches Zentrum für Luft- und Raumfahrt e.V., Königswinterer Str. 522-524, 53227 Bonn, Germany 4 Institut de Planétologie et d’Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France 5 INAF-Osservatorio Astrofisico di Arcetri, Instituto Nazionale di Astrofisica, Largo E. Fermi 5, 50125 Firenze, Italy Received 7 December 2010 / Accepted 12 March 2011 ABSTRACT Aims. We present one-dimensional aperture synthesis imaging of the red supergiant Betelgeuse (α Ori) with VLTI/AMBER. We reconstructed for the first time one-dimensional images in the individual CO first overtone lines. Our aim is to probe the dynamics of the inhomogeneous atmosphere and its time variation. Methods. Betelgeuse was observed between 2.28 and 2.31 μm with VLTI/AMBER using the 16-32-48 m telescope configuration with a spectral resolution up to 12 000 and an angular resolution of 9.8 mas. The good nearly one-dimensional uv coverage allows us to reconstruct one-dimensional projection images (i.e., one-dimensional projections of the object’s two-dimensional intensity distri- butions).
    [Show full text]
  • Open Batalha-Dissertation.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.
    [Show full text]
  • Jason A. Dittmann 51 Pegasi B Postdoctoral Fellow
    Jason A. Dittmann 51 Pegasi b Postdoctoral Fellow Contact Massachusetts Institute of Technology MIT Kavli Institute: 37-438f 617-258-5928 (office) 70 Vassar St. 520-820-0928 (cell) Cambridge, MA 02139 [email protected] Education Harvard University, Cambridge, MA PhD, Astronomy and Astrophysics, May 2016 Advisor: David Charbonneau, PhD • University of Arizona, Tucson, AZ BS, Astronomy, Physics, May 2010 Advisor: Laird Close, PhD • Recent 51 Pegasi b Postdoctoral Fellow July 2017 – Present Research Earth and Planetary Science Department, MIT Positions Faculty Contact: Sara Seager Postdoctoral Researcher Feb 2017 – June 2017 Kavli Institute, MIT Supervisor: Sarah Ballard Postdoctoral Researcher July 2016 – Jan 2017 Center for Astrophysics, Harvard University Supervisor: David Charbonneau Research Assistant Sep 2010 – May 2016 Center for Astrophysics, Harvard University Advisors: David Charbonneau Publication 16 first and second authored publications Summary 22 additional co-authored publications 1 first-authored publication in Nature 1 co-authored publication in Nature Selected 51 Pegasi b Postdoctoral Fellowship 2017 – Present Awards and Pierce Fellowship 2010 – 2013 Honors Certificate of Distinction in Teaching 2012 Best Project Award, Physics Ugrd. Research Symp. 2009 Best Undergraduate Research (Steward Observatory) 2009 – 2010 Grants Principal Investigator, Hubble Space Telescope 2017, 10 orbits Awarded “Initial Reconaissance of a Transiting Rocky (maximum award) Planet in a Nearby M-Dwarf’s Habitable Zone” Principal Investigator,
    [Show full text]
  • Eso 16 Metre Very Large Telescope: the Linear Array Concept
    767 ESO 16 METRE VERY LARGE TELESCOPE: THE LINEAR ARRAY CONCEPT Daniel Enard European Southern Observatory Karl-Schwarzschild-Str. 2, D-8046 Garching Introduction: Historical background and present organization VLT preliminary studies were initiated at ESO as early as 1978 (1). After ESO's move from Geneva to Munich (1980) a study group chaired first by R. Wilson, then by J.P. Swings was set up and among a number of conceptual ideas that were analysed, the concept of a "limited array" emerged as the most attractive (2). A significant driver was then, interferometry; however after a theoretical analysis performed by F. Roddier and P. Lena (3), it became clear that interferometry with large telescopes would not be cost-effective in the visible range. In the IR, the situation would be more favorable but the overall efficiency would depend on factors that are not reliably known at present. The conclusion was that it might be difficult to justify a huge investment too exclusively oriented towards interferometry, such as an array of movable large telescopes, but on the other hand the possibility of a coherent coupling in the IR should be maintained as a prime requirement since new developments in detectors and in adaptive optics could make it effective and scientifically very rewarding. After the ESO VLT workshop in Cargese it was decided to create a fully dedicated project group in order to carry out the preliminary studies. This group was effectively created in October '83 and is expected to be fully operational by the end of '84. The project group will be advised on scientific matters by a Scientific Working Group and specialized sub-groups whose task is basically to define the various instruments and to study their feasibility; these studies will be essential to set the detailed scientific objectives and to define the relevant telescope requirements.
    [Show full text]