Role of the Prolyl Isomerase Pin1 in the Pathogenesis of Parkinson's

Total Page:16

File Type:pdf, Size:1020Kb

Role of the Prolyl Isomerase Pin1 in the Pathogenesis of Parkinson's Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Role of the prolyl isomerase Pin1 in the pathogenesis of Parkinson's disease and neuroprotection by novel targeted compounds in pre-clinical animal models of the disease Anamitra Ghosh Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Immunology and Infectious Disease Commons, Neuroscience and Neurobiology Commons, and the Toxicology Commons Recommended Citation Ghosh, Anamitra, "Role of the prolyl isomerase Pin1 in the pathogenesis of Parkinson's disease and neuroprotection by novel targeted compounds in pre-clinical animal models of the disease" (2012). Graduate Theses and Dissertations. 12327. https://lib.dr.iastate.edu/etd/12327 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Role of the prolyl isomerase Pin1 in the pathogenesis of Parkinson’s disease and neuroprotection by novel targeted compounds in pre-clinical animal models of the disease by Anamitra Ghosh A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Neuroscience Program of Study Committee: Anumantha G. Kanthasamy, Major Professor Ann Smiley-Oyen Arthi Kanthasamy Marian L. Kohut N. Matthew Ellinwood Iowa State University Ames, Iowa 2012 Copyright© Anamitra Ghosh, 2012. All rights reserved. ii TABLE OF CONTENTS ABSTRACT iv CHAPTER I. GENERAL INTRODUCTION Dissertation Organization 01 Introduction 01 Background and Literature Review I: Pin1- a new physiological substrate in human Diseases including cancers and neurodegenerative disorders 05 Background and Literature Review II: Neuroinflammation and oxidative stress in Parkinson’s disease 36 CHAPTER II. ACTIVATION OF NOVEL PROAPOPTOTIC PROTEIN PIN1 (PEPTIDYL-PROLYL CIS/TRANS ISOMERASE) IN CELL CULTURE AND ANIMAL MODEL OF PARKINSON’S DISEASE 58 Abstract 58 Introduction 59 Materials and Methods 61 Results 71 Discussion 82 References 87 CHAPTER III. PIN1 MODULATES ACTIVATION OF PROINFLAMMATORY TRANSCRIPTION FACTOR NF-ΚB IN NEUROINFLAMMATORY REACTIONS IN PARKINSON’S DISEASE 115 Abstract 115 Introduction 116 Materials and Methods 119 Results 125 Discussion 133 References 138 iii CHAPTER IV. ANTI-INFLAMMATORY AND NEUROPROTECTIVE EFFECTS OF A NOVEL COMPOUND DIAPOCYNIN IN A MURINE MODEL OF PARKINSON’S DISEASE 161 Abstract 161 Introduction 162 Materials and Methods 164 Results 169 Discussion 175 References 181 CHAPTER V. NOVEL COMPOUND MITO-APOCYNIN PROTECTS DOPAMINERGIC NEURONS VIA ATTENUATING OXIDATIVE STRESS AND INFLAMMATION IN ANIMAL MODEL OF PARKINSON’S DISEASE 205 Abstract 205 Introduction 206 Materials and Methods 208 Results 215 Discussion 224 References 229 CHAPTERVI. GENERAL CONCLUSION 255 References 261 ACKNOWLEDGEMENT 304 iv ABSTRACT Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder named by the French neurologist Jean-Martin Charot, after the British physician James Parkinson who first described the disease as “Shaking Palsy”. Pathologically, PD is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), a marked reduction of dopamine in the striatum, the presence of ubiquitin and α-synuclein positive cytoplasmic inclusions known as Lewy bodies, and depigmentation of the locus cereleus. The prevailing theory regarding processes that are likely to account for progressive degeneration of the dopaminergic neurons in the nigrostriatal axis involves on mitochondrial dysfunction, oxidative stress, excitotoxicity and neuroinflammation. Of those, neuroinflammation and oxidative stress have gained the most focus recently. Research over the last decade has provided extensive evidence that the sustained microglial and astroglial neuroinflammatory responses cause progressive and delayed dopaminergic neurodegeneration. However, the mechanisms by which glial cells activation and subsequent inflammation lead to dopaminergic neurodegeneration remain poorly understood. Development of effective therapeutic approaches to halt the disease progression of PD is of paramount importance. My objective in this Ph.D. thesis work was to characterize important signaling molecules activated in neuroinflammation mediated neurodegenerative pathways as well as characterze of novel compounds in a pre-clinical mouse model of PD. Protein interacting with never in mitosis – A (Pin1) is a peptidyl-prolyl isomerase, that specifically recognizes phosphorylated serine or threonine residues immediately preceding proline (pSer/Thr-Pro) in a subset of proteins in which it isomerizes the cis/trans conformation of the v peptide bond. High expression levels of Pin1 in terminally differentiated and post mitotic neurons suggest that it plays an important role in neurons, except in cell cycle regulation and proliferation. Recently, Pin1 overexpression was shown to facilitate formation of -synuclein inclusions in a cellular model of -synuclein aggregation. Pin1 was also localized in Lewy bodies in PD patients. But the level, activity, and role of Pin1 in the pathogenesis of PD are incompletely known. We hypothesized that Pin1 is differentially activated in neuronal and glial cells of the nigral dopaminergic system, and that it regulates NF-κB-mediated sustained neuroinflammatory processes in cell culture and in an animal model of Parkinson’s disease. Herein, we demonstrate for the first time that there is a dopaminergic neuron specific upregulation of Pin1 in human postmortem PD brain sections as well as in cell culture and animal models. We observed a rapid increase in Pin1 expression in both the 1-methyl- 4phenyl pyridinium (MPP+)-treated cell culture and in 1-methyl-4-phenyl-1-2-3-6- tetrahydroptridine MPTP treated mice. Also, Pin1 acts as an important pro-apoptotic factor in the selective degeneration of dopaminergic neurons. Importantly, pharmacological inhibition of Pin1 attenuates MPTP-induced Pin1 expression in vitro and in vivo and protects against MPTP-induced neurodegeneration in the nigrostriatal axis. We also demonstrate for the first time that, microglia and astrocytes express Pin1 and that there is a strong association between Pin1 and NF-κB p65 in BV2 microglial cells. Recent studies demonstrated that the promoter regions of proinflammatory molecules contain the DNA binding site for NF-κB. We have shown that Pin1 and NF-κB p65 inhibition by Juglone leads to attenuation of glial cells activation and subsequent reduction of proinflammatory reactions in cell culture and in an animal model of PD. While characterizing the role of Pin1 in the pathogenesis of PD, we also tested the efficacy of novel compounds for protection of dopaminergic neurons in a mouse vi model of PD. We demonstrate that the novel compound diapocynin, a metabolite of apocynin, blocks MPTP-induced activation of microglial and astroglial cells, thus inhibiting the inflammatory and oxidative stress processes in MPTP-treated mice. Diapocynin also protects the nigrostriatum against MPTP toxicity. The final chapter of this work characterizes the anti-inflammatory and neuroprotective properties of mito-apocynin, a mitochondria targeted compound in the MPTP mouse model of PD. Mitoapocynin prevents the behavioral imapariments and dopamine loss caused by MPTP-induced toxicity. We have shown that mito-apocynin protects the nigrostriatum by attenuating glial cell mediated neuroinflammation and oxidative stress. Collectively, the research described herein characterizes the novel and important roles of Pin1 in the neuroinflammation and pathophysiology of Parkinson’s disease, as well as establishes the efficacy of novel compounds in protection of the nigrostriatum in a pre-clinical mouse model of Parkinson’s disease. 1 CHAPTER I GENERAL INTRODUCTION Thesis Layout and Organization The alternative format was chosen for writing this dissertation as it consists of manuscripts that are either under peer review or being prepared for submission. The dissertation contains a general introduction, four research papers, a general conclusion that discusses the overall findings from all the chapters and acknowledgement. The references for each manuscript chapter are listed at the end of that specific section. References pertaining to the background and literature review as well as those used in general conclusion section are listed at the end of the dissertation. The General Introduction (Chapter I) briefly provides the current knowledge on Parkinson’s disease and describes an overview of the research objective. The Background and Literature Review I provide background information on Parkinson’s disease (PD), pathological features of PD, physiology and chemistry of dopamine, genetics of PD and apoptosis in PD, MPTP mouse models of PD and role transcription factor NF-κB in neurodegeneration. It also has the current knowledge of peptidyl prolyl cis/trans isomerase, Pin1 in cancers and neurodegenerative disorders, and provides an overview of the research objectives pertaining to chapters II and III. Background and Literature Review II summarize the current evidences implicating a pathogenic role for reactive gliosis in dopaminergic neurodegeneration, role of oxidative stress
Recommended publications
  • Proteomic Based Approaches for Differentiating Tumor Subtypes
    Proteomic Based Approaches for Differentiating Tumor Subtypes DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Linan Wang Graduate Program in Integrated Biomedical Science Program The Ohio State University 2017 Dissertation Committee: Michael Alan Freitas, PhD Advisor Charles Lawrence Hitchcock, MD/PhD Kun Huang, PhD Mark Robert Parthun, PhD Copyright by Linan Wang 2017 Abstract In medicine, successful patient treatment relies on early and accurate diagnosis. Following diagnosis disease specific and effective treatments are necessary, targeting affected cells while sparing normal tissue. While past studies have focused on genomics, the importance of transcriptomics and proteomics is increasingly understood. Proteomics, the study of proteins, will be the focus of this dissertation. Proteomics provide insight in the post transcriptional and translational regulation of proteins, information not available through the study of DNA and RNA alone. These effects play an important role in protein quantity and physiological function. It is well established that changes in protein homeostasis are associated with disease conditions, hence providing the grounds for biomarker discovery. It has been shown that if homeostasis can be restored, disease conditions can be reversed, further emphasizing the role of proteomics in therapeutic target discovery. Chapter 1 highlights the importance of proteomics in the field of biomedical research with an emphasis on clinical translational sciences in moving discoveries from bench to bedside. Chapters 2 of this dissertation describe the development of methodology for the study of archived clinical biopsy samples. Following biopsy, patient tissue is preserved with formalin fixation and paraffin embedding (FFPE) and archived.
    [Show full text]
  • Addiction, Opioids, and Beyond
    Addiction, Opioids and Beyond Chronic Pain Mental Illness Substance Dep Medical Illness Genetics/Env Objectives Understanding Definitions in Substance Dependency and Addiction. Review of Basic Epidemiology in Opioids Understanding Basic Addiction Physiology and how it relates to Schizophrenia Knowledge the General Overview of SUD Treatment Knowledge of non-pharmacological treatments of SUD. Understanding of Prescription Opioids, Side Effects and Dangers Understanding Prescription Opioids in the setting of Chronic Pain Understand MAT for Opioids (Tip43) with Naltrexone, Methadone and Buprenorphine Naloxone WHAT DOES ADDICTION MEAN? In 2016 11.5 million people 12 years and older misused opioid pain medications 1.8 million had substance use disorder involving prescription pain medications Between 2000 to 2015, more then 500,000 person died from opioid overdoses Opioid and 2012 clinicians wrote 259 million prescription for opioids Overdose 2.5 million people with Opioid Addiction (JAMA) US deaths from drug overdoses hit record high in 2014, propelled by abuse of prescription painkillers and heroin. (CDC) Heroin related deaths tripled since 2010. Only 2.2% of US Physician have waiver to prescribe Buprenorphine (JAMA) Statistically, nonmedical use of drugs from individuals obtained a majority of their drugs from friends and relatives, however 80% of those “friends and family” obtained from ONE DOCTOR. Addiction Poorly Understood • Regard Addiction as a moral problem • Fail to adequately screen • 1% of medical school curriculum • Believe interventions are ineffective JAMA,2003,290, 1299 Defining the Word "Addiction" The American Society of Addiction Medicine (ASAM), American Pain Society (APS), and American Academy of Pain Medicine (AAPM) define addiction as a primary, chronic, neurobiological disease with genetic, psychosocial, and environmental factors influencing its development and manifestations characterized by one or more of the behaviors listed above (ASAM, 2001).
    [Show full text]
  • Regulation of the Tyrosine Kinase Itk by the Peptidyl-Prolyl Isomerase Cyclophilin A
    Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A Kristine N. Brazin, Robert J. Mallis, D. Bruce Fulton, and Amy H. Andreotti* Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved December 14, 2001 (received for review October 5, 2001) Interleukin-2 tyrosine kinase (Itk) is a nonreceptor protein tyrosine ulation of the cis and trans conformers. The majority of folded kinase of the Tec family that participates in the intracellular proteins for which three-dimensional structural information has signaling events leading to T cell activation. Tec family members been gathered contain trans prolyl imide bonds. The cis con- contain the conserved SH3, SH2, and catalytic domains common to formation occurs at a frequency of Ϸ6% in folded proteins (17), many kinase families, but they are distinguished by unique se- and a small subset of proteins are conformationally heteroge- quences outside of this region. The mechanism by which Itk and neous with respect to cis͞trans isomerization (18–21). Further- related Tec kinases are regulated is not well understood. Our more, the activation energy for interconversion between cis and studies indicate that Itk catalytic activity is inhibited by the peptidyl trans proline is high (Ϸ20 kcal͞mol) leading to slow intercon- prolyl isomerase activity of cyclophilin A (CypA). NMR structural version rates (22). This barrier is a rate-limiting step in protein studies combined with mutational analysis show that a proline- folding and may serve to kinetically isolate two functionally and dependent conformational switch within the Itk SH2 domain reg- conformationally distinct molecules.
    [Show full text]
  • Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-21-2012 12:00 AM Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence Kyle Pitchers The University of Western Ontario Supervisor Lique M. Coolen The University of Western Ontario Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Kyle Pitchers 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Recommended Citation Pitchers, Kyle, "Neuroplasticity in the Mesolimbic System Induced by Sexual Experience and Subsequent Reward Abstinence" (2012). Electronic Thesis and Dissertation Repository. 592. https://ir.lib.uwo.ca/etd/592 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. NEUROPLASTICITY IN THE MESOLIMBIC SYSTEM INDUCED BY SEXUAL EXPERIENCE AND SUBSEQUENT REWARD ABSTINENCE (Spine Title: Sex, Drugs and Neuroplasticity) (Thesis Format: Integrated Article) By Kyle Kevin Pitchers Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the requirements for degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Kyle K. Pitchers, 2012 THE UNIVERSITY
    [Show full text]
  • The Effects of Alcohol and Nicotine Pretreatment During Adolescence on Adulthood Responsivity to Alcohol Antoniette M
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2007 The effects of alcohol and nicotine pretreatment during adolescence on adulthood responsivity to alcohol Antoniette M. Maldonado University of South Florida Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Maldonado, Antoniette M., "The effects of alcohol and nicotine pretreatment during adolescence on adulthood responsivity to alcohol" (2007). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2272 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Effects of Alcohol and Nicotine Pretreatment During Adolescence on Adulthood Responsivity to Alcohol by Antoniette M. Maldonado A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Arts Department of Psychology College of Arts and Sciences University of South Florida Major Professor: Cheryl L. Kirstein, Ph.D. Mark Goldman, Ph.D. Toru Shimizu, Ph.D. David J. Drobes, Ph.D. Date of Approval: 18 October, 2007 Keywords: addiction, adolescent, alcohol-nicotine interactions, conditioned place preference, novelty preference © Copyright 2007, Antoniette M. Maldonado Dedication To my mom, Sylvia Ann Valdez. Mom, you are my very best friend and I do not know what I would have done without all of the support you gave me through every single step of this journey. You make such a difference in my life and I cannot even begin to describe how grateful I am to have you still here with me.
    [Show full text]
  • Pin1 Inhibitors: Towards Understanding the Enzymatic
    Pin1 Inhibitors: Towards Understanding the Enzymatic Mechanism Guoyan Xu Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University In the partial fulfillment of the requirement for the degree of Doctor of Philosophy In Chemistry Felicia A Etzkorn, Chair David G. I. Kingston Neal Castagnoli Paul R. Carlier Brian E. Hanson May 6, 2010 Blacksburg, Virginia Keywords: Pin1, anti-cancer drug target, transition-state analogues, ketoamides, ketones, reduced amides, PPIase assay, inhibition Pin1 Inhibitors: Towards Understanding the Enzymatic Mechanism Guoyan Xu Abstract An important role of Pin1 is to catalyze the cis-trans isomerization of pSer/Thr- Pro bonds; as such, it plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including Cdc25, c- Jun, and p53. The expression of Pin1 correlates with cyclin D1 levels, which contributes to cancer cell transformation. Overexpression of Pin1 promotes tumor growth, while its inhibition causes tumor cell apoptosis. Because Pin1 is overexpressed in many human cancer tissues, including breast, prostate, and lung cancer tissues, it plays an important role in oncogenesis, making its study vital for the development of anti-cancer agents. Many inhibitors have been discovered for Pin1, including 1) several classes of designed inhibitors such as alkene isosteres, non-peptidic, small molecular Pin1 inhibitors, and indanyl ketones, and 2) several natural products such as juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen. These Pin1 inhibitors show promise in the development of novel diagnostic and therapeutic anticancer drugs due to their ability to block cell cycle progression.
    [Show full text]
  • Role of Protein Repair Enzymes in Oxidative Stress Survival And
    Shome et al. Annals of Microbiology (2020) 70:55 Annals of Microbiology https://doi.org/10.1186/s13213-020-01597-2 REVIEW ARTICLE Open Access Role of protein repair enzymes in oxidative stress survival and virulence of Salmonella Arijit Shome1* , Ratanti Sarkhel1, Shekhar Apoorva1, Sonu Sukumaran Nair2, Tapan Kumar Singh Chauhan1, Sanjeev Kumar Bhure1 and Manish Mahawar1 Abstract Purpose: Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein repair enzymes, protein L-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and methionine sulfoxide reductase (MSR). Methods: Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed. The information obtained from the research articles was analyzed and categorized into general information about the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the importance of these enzymes in Salmonella Typhimurium. Results: Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes in different bacteria revealed their importance in the virulence and oxidative stress survival.
    [Show full text]
  • Diversification of Importin-Α Isoforms in Cellular Trafficking and Disease States
    Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Biology Department of Biochemistry and Molecular Biology Faculty Papers 2-15-2015 Diversification of importin-α isoforms in cellular trafficking and disease states. Ruth A. Pumroy Thomas Jefferson University, [email protected] Gino Cingolani Thomas Jefferson University, [email protected] Let us know how access to this document benefits ouy Follow this and additional works at: https://jdc.jefferson.edu/bmpfp Part of the Medical Biochemistry Commons Recommended Citation Pumroy, Ruth A. and Cingolani, Gino, "Diversification of importin-α isoforms in cellular trafficking and disease states." (2015). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 107. https://jdc.jefferson.edu/bmpfp/107 This Article is brought to you for free and open access by the Jefferson Digital Commons. The effeJ rson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The ommonC s is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The effeJ rson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptBiochem Author Manuscript J. Author manuscript; Author Manuscript available in PMC 2015 April 21. Published in final edited form as: Biochem J.
    [Show full text]
  • Sulfopin, a Selective Covalent Inhibitor of Pin1, Blocks Myc-Driven Tumor Initiation and Growth in Vivo
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.20.998443; this version posted March 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Sulfopin, a selective covalent inhibitor of Pin1, blocks Myc-driven tumor initiation and growth in vivo Christian Dubiella1,*, Benika J. Pinch2,3,4,*, Daniel Zaidman1, Theresa D. Manz2,3,5, Evon Poon6, ShuninG He7, Efrat Resnick1, Ellen M. LanGer8,9, Colin J. Daniel8,9, Hyuk-Soo Seo2, YinG Chen10, Scott B. Ficarro2,11,12,13, Yann Jamin14, Xiaolan Lian15,16,17, Shin Kibe15,16,17, ShinGo Kozono15,16,17, Kazuhiro Koikawa15,16,17, Zainab M. Doctor2,3, Behnam Nabet2,3, Christopher M. Browne2,3,18, Annan YanG2,19, Liat Stoler-Barak20, Richa B. Shah21,22, Nick E. VanGos2, Ezekiel A. Geffken2, Roni Oren23, Samuel Sidi21,22, Ziv Shulman20, Chu WanG10, Jarrod A. Marto2,11,12,13, Sirano Dhe- PaGanon2, Thomas Look7,24, Xiao Zhen Zhou15,16,17, Kun PinG Lu15,16,17, Rosalie C. Sears8,9,25, Louis Chesler6, Nathanael S. Gray2,3,#, Nir London1,# 1 Department of OrGanic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel. 2 Department of Cancer BioloGy, Dana–Farber Cancer Institute, Boston, MA 02115, USA. 3 Department of BioloGical Chemistry and Molecular PharmacoloGy, Harvard Medical School, Boston, MA 02215, USA. 4 Department of Chemistry and Chemical BioloGy; Department of Chemical BioloGy, Harvard University, CambridGe, MA, 02138, USA.
    [Show full text]
  • Exploring the Chemistry and Evolution of the Isomerases
    Exploring the chemistry and evolution of the isomerases Sergio Martínez Cuestaa, Syed Asad Rahmana, and Janet M. Thorntona,1 aEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved January 12, 2016 (received for review May 14, 2015) Isomerization reactions are fundamental in biology, and isomers identifier serves as a bridge between biochemical data and ge- usually differ in their biological role and pharmacological effects. nomic sequences allowing the assignment of enzymatic activity to In this study, we have cataloged the isomerization reactions known genes and proteins in the functional annotation of genomes. to occur in biology using a combination of manual and computa- Isomerases represent one of the six EC classes and are subdivided tional approaches. This method provides a robust basis for compar- into six subclasses, 17 sub-subclasses, and 245 EC numbers cor- A ison and clustering of the reactions into classes. Comparing our responding to around 300 biochemical reactions (Fig. 1 ). results with the Enzyme Commission (EC) classification, the standard Although the catalytic mechanisms of isomerases have already approach to represent enzyme function on the basis of the overall been partially investigated (3, 12, 13), with the flood of new data, an integrated overview of the chemistry of isomerization in bi- chemistry of the catalyzed reaction, expands our understanding of ology is timely. This study combines manual examination of the the biochemistry of isomerization. The grouping of reactions in- chemistry and structures of isomerases with recent developments volving stereoisomerism is straightforward with two distinct types cis-trans in the automatic search and comparison of reactions.
    [Show full text]
  • Ventral Tegmental Area Dopamine Cell Activation During Male Rat
    The Journal of Neuroscience, September 21, 2016 • 36(38):9949–9961 • 9949 Behavioral/Cognitive Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and D-Amphetamine Cross-Sensitization following Sex Abstinence Lauren N. Beloate,1,2 XAzar Omrani,4 Roger A. Adan,4 Ian C. Webb,1 and XLique M. Coolen1,3 1Department of Neurobiology and Anatomical Sciences, 2Graduate Program in Neuroscience, and 3Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and 4Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ⌬FosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ⌬FosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior.
    [Show full text]
  • The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats
    Neuropsychopharmacology (2017) 42, 2292–2300 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats 1 1 ,1 Claire J Foldi , Laura K Milton and Brian J Oldfield* 1 Department of Physiology, Monash University, Clayton, VIC, Australia Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged.
    [Show full text]