Regulation of the Tyrosine Kinase Itk by the Peptidyl-Prolyl Isomerase Cyclophilin A

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of the Tyrosine Kinase Itk by the Peptidyl-Prolyl Isomerase Cyclophilin A Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A Kristine N. Brazin, Robert J. Mallis, D. Bruce Fulton, and Amy H. Andreotti* Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved December 14, 2001 (received for review October 5, 2001) Interleukin-2 tyrosine kinase (Itk) is a nonreceptor protein tyrosine ulation of the cis and trans conformers. The majority of folded kinase of the Tec family that participates in the intracellular proteins for which three-dimensional structural information has signaling events leading to T cell activation. Tec family members been gathered contain trans prolyl imide bonds. The cis con- contain the conserved SH3, SH2, and catalytic domains common to formation occurs at a frequency of Ϸ6% in folded proteins (17), many kinase families, but they are distinguished by unique se- and a small subset of proteins are conformationally heteroge- quences outside of this region. The mechanism by which Itk and neous with respect to cis͞trans isomerization (18–21). Further- related Tec kinases are regulated is not well understood. Our more, the activation energy for interconversion between cis and studies indicate that Itk catalytic activity is inhibited by the peptidyl trans proline is high (Ϸ20 kcal͞mol) leading to slow intercon- prolyl isomerase activity of cyclophilin A (CypA). NMR structural version rates (22). This barrier is a rate-limiting step in protein studies combined with mutational analysis show that a proline- folding and may serve to kinetically isolate two functionally and dependent conformational switch within the Itk SH2 domain reg- conformationally distinct molecules. These special properties, ulates substrate recognition and mediates regulatory interactions and the fact that many proline residues are highly conserved in with the active site of CypA. CypA and Itk form a stable complex homologous protein sequences, suggest that prolines may play a in Jurkat T cells that is disrupted by treatment with cyclosporin A. role in conformer-specific recognition and function. Moreover, the phosphorylation levels of Itk and a downstream Three distinct enzyme families have been identified that substrate of Itk, PLC␥1, are increased in Jurkat T cells that have catalyze the cis͞trans isomerization of prolyl imide bonds. These been treated with cyclosporin A. These findings support a novel peptidyl-prolyl cis͞trans isomerases (PPIases) (23, 24) consist of mode of tyrosine kinase regulation for a Tec family member and the cyclophilins (Cyp), FK506-binding proteins (FKBPs), and provide a molecular basis for understanding a cellular function of the parvulins (25, 26). CypA and FKBP12 are the intracellular the ubiquitous peptidyl prolyl isomerase, CypA. protein targets of the immunosuppressive natural products cyclosporin A (CsA) and FK506, respectively (27). These small ormal cell growth depends on the precise control of protein molecules inhibit PPIase activity and block T cell activation. Ntyrosine kinase activity (1). For certain families of kinases, However, the immunosuppressant activity of these small mole- the mechanism of catalytic regulation is well understood. Struc- cules derives not from inhibition of isomerase activity but rather tures of Src tyrosine kinases (2, 3) reveal intramolecular inter- from interruption of signaling events by the inhibitor–PPIase BIOCHEMISTRY actions mediated by the Src homology 2 (SH2) and Src homology complexes themselves (28). The binary CsA–CypA and FK506– 3 (SH3) domains that control catalytic activity of the neighboring FKBP12 complexes bind to and inhibit calcineurin, the serine͞ kinase domain. Specifically, distortion of the Src kinase active threonine phosphatase responsible for dephosphorylation and site is achieved in part by SH2 binding to a phosphorylated subsequent nuclear translocation of the IL-2 transcription factor, tyrosine residue in the C-terminal tail of Src (4). For other nuclear factor of activated T cells (29, 30). The PPIase inhibitors, families of kinases, the mechanistic details of catalytic regulation CsA and FK506, have shed considerable light on immunosup- remain elusive. In particular, the Tec family of nonreceptor pression as well as the signal transduction pathways involved in tyrosine kinases (5) displays distinguishing characteristics that T cell signaling, yet the normal cellular roles of the PPIases point to an alternative mode of regulation. The Tec family remain unclear. Although recent efforts have identified several kinases modulate hematopoietic cellular responses to external PPIase-mediated cellular processes (31–37), the range of normal stimuli (6). The T cell-specific Tec family member, interleukin-2 cellular functions controlled by the ubiquitous PPIases and the tyrosine kinase (Itk) (7, 8), plays a role in the maturation of molecular basis for their role in regulating signaling cascades thymocytes, is required for intracellular signaling following T have not yet been fully elucidated. cell receptor (TCR) crosslinking, and is involved in generation The cellular targets of the PPIases are likely folded proteins of second messengers that mediate cytoskeletal reorganization that contain a conformationally heterogeneous proline residue. (9). Itk is homologous to Src in the region spanning the SH3, We now present a structural analysis of Itk that places this SH2, and kinase domain but lacks the Src C-terminal tail that protein among those that exhibit multiple, well defined, low contains the regulatory tyrosine. However, activation of Itk energy conformations in solution. A single prolyl imide bond is depends on SH2-mediated interactions with phosphorylated responsible for the observed conformational heterogeneity signaling partners (9) such as Slp-76 (10) and LAT (11), sug- within Itk, and we show that this proline-dependent conforma- gesting a regulatory role for the Itk SH2 domain despite the tional switch directly regulates Itk substrate recognition. More- absence of a Src-like C-terminal regulatory tyrosine residue. over, we demonstrate that the PPIase, CypA, catalyzes the The Src regulatory mechanism highlights the role of molecular switches in controlling cellular signaling pathways. Well studied covalent modifications such as phosphorylation generate recog- This paper was submitted directly (Track II) to the PNAS office. nition sites that affect the activity and binding behavior of many Abbreviations: Itk, interleukin-2 tyrosine kinase; TCR, T cell receptor; SH2, Src homology ͞ signaling proteins (1, 12–14). Moreover, there are potential 2; SH3, Src homology 3; PPIase, peptidyl-prolyl cis trans isomerase; CypA, cyclophilin A; ͞ CsA, cyclosporin A; FKBP, FK506-binding protein; HSQC, heteronuclear single quantum regulatory switches intrinsic to polypeptides such as the cis trans correlation. isomerization of peptide bonds preceding the amino acid proline *To whom reprint requests should be addressed. E-mail: [email protected]. (15, 16). In native proteins, the local environment surrounding The publication costs of this article were defrayed in part by page charge payment. This a proline residue, as well as the overall tertiary structure, article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. influences the relative energies and therefore the relative pop- §1734 solely to indicate this fact. www.pnas.org͞cgi͞doi͞10.1073͞pnas.042529199 PNAS ͉ February 19, 2002 ͉ vol. 99 ͉ no. 4 ͉ 1899–1904 Downloaded by guest on September 28, 2021 cis͞trans isomerization of the conformationally heterogeneous cipitated from precleared lysates with anti-Itk antibody, anti- prolyl imide bond within Itk. In vitro and in vivo functional data Zap-70 antibody (Upstate Biotechnology), or anti-PLC␥1 anti- reveal a stable CypA–Itk complex in T cells and point to a role body clone B-6-4 (Upstate Biotechnology) and protein G or for CypA in repressing Itk kinase activity. Together, these data protein A agarose. Immunoprecipitates were washed three times support a novel mode of nonreceptor tyrosine kinase regulation in RIPA lysis buffer and once in PBS resuspension buffer. and provide a molecular basis for understanding a cellular Samples were resolved on an 8% or a 12.5% (for CypA detec- function of the PPIase, CypA. tion) SDS-polyacrylamide gel. Itk detection was as described above, and Zap-70 and PLC␥1 were detected with anti-Zap-70 Materials and Methods antibody and anti-PLC␥1 antibody, respectively. CypA was Protein Expression and NMR Spectroscopy. Full-length Itk cDNA detected with anti-CypA (Calbiochem), and FKBP12 was de- (7) for PCR amplification was a gift from Leslie J. Berg tected with anti-FKBP (N-19) (Santa Cruz Biotechnology). The (University of Massachusetts Medical School). Protein sam- identity of the CypA band was confirmed by comigration with ples for NMR were expressed and purified as described purified protein purchased from Sigma. previously (38). Unless otherwise indicated, all NMR samples were 1.5 mM. NMR spectra were recorded at 25°C on a Bruker Competitive Binding Assays. Lysates and immunoprecipitated Itk DRX500 spectrometer operating at a 1H frequency of 499.867 were obtained as described above from unstimulated Jurkat T MHz. Bovine calf thymus CypA (Sigma) was used for NMR cells. The protein G agarose, containing immunoprecipitated experiments. Itk, was briefly centrifuged, and the supernatant was removed. The agarose was then resuspended
Recommended publications
  • Early Detection of Peripheral Blood Cell Signature in Children Developing B-Cell Autoimmunity at a Young Age
    2024 Diabetes Volume 68, October 2019 Early Detection of Peripheral Blood Cell Signature in Children Developing b-Cell Autoimmunity at a Young Age Henna Kallionpää,1 Juhi Somani,2 Soile Tuomela,1 Ubaid Ullah,1 Rafael de Albuquerque,1 Tapio Lönnberg,1 Elina Komsi,1 Heli Siljander,3,4 Jarno Honkanen,3,4 Taina Härkönen,3,4 Aleksandr Peet,5,6 Vallo Tillmann,5,6 Vikash Chandra,3,7 Mahesh Kumar Anagandula,8 Gun Frisk,8 Timo Otonkoski,3,7 Omid Rasool,1 Riikka Lund,1 Harri Lähdesmäki,2 Mikael Knip,3,4,9,10 and Riitta Lahesmaa1 Diabetes 2019;68:2024–2034 | https://doi.org/10.2337/db19-0287 The appearance of type 1 diabetes (T1D)-associated function before T1D and suggest a potential role for IL32 autoantibodies is the first and only measurable param- in the pathogenesis of T1D. eter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indi- cate an active autoimmune reaction, wherein the im- Family and sibling studies in type 1 diabetes (T1D) have mune tolerance is already broken. Therefore, there is implicated a firm genetic predisposition to a locus con- a clear and urgent need for new biomarkers that predict taining HLA class I and class II genes on chromosome the onset of the autoimmune reaction preceding auto- 6 suggesting a role for CD4+ as well as CD8+ T cells in T1D fl antibody positivity or re ect progressive b-cell destruc- pathogenesis (1–3). As much as 30–50% of the genetic risk – tion. Here we report the mRNA sequencing based is conferred by HLA class II molecules, which are crucial in analysis of 306 samples including fractionated samples antigen presentation to CD4+ T cells.
    [Show full text]
  • NADPH-Dependent A-Oxidation of Unsaturated Fatty Acids With
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6673-6677, August 1992 Biochemistry NADPH-dependent a-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms (5-enoyl-CoA/A3,A2-enoyl-CoA isomerase/A3',52'4-dienoyl-CoA isomerase/2,4-dienoyl-CoA reductase) TOR E. SMELAND*, MOHAMED NADA*, DEAN CUEBASt, AND HORST SCHULZ* *Department of Chemistry, City College of the City University of New York, New York, NY 10031; and tJoined Departments of Chemistry, Manhattan College/College of Mount Saint Vincent, Riverdale, NY 10471 Communicated by Salih J. Wakil, April 13, 1992 ABSTRACT The mitochondrial metabolism of 5-enoyl- a recent observation of Tserng and Jin (5) who reported that CoAs, which are formed during the (3-oxidation of unsaturated the mitochondrial -oxidation of 5-enoyl-CoAs is dependent fatty acids with double bonds extending from odd-numbered on NADPH. Their analysis of metabolites by gas chroma- carbon atoms, was studied with mitochondrial extracts and tography/mass spectrometry led them to propose that the purified enzymes of (3-oxidation. Metabolites were identified double bond of 5-enoyl-CoAs is reduced by NADPH to yield spectrophotometrically and by high performance liquid chro- the corresponding saturated fatty acyl-CoAs, which are then matography. 5-cis-Octenoyl-CoA, a putative metabolite of further degraded by P-oxidation. linolenic acid, was efficiently dehydrogenated by medium- This report addresses the question of how 5-enoyl-CoAs chain acyl-CoA dehydrogenase (EC 1.3.99.3) to 2-trans-5-cis- are chain-shortened by P-oxidation. We demonstrate that octadienoyl-CoA, which was isomerized to 3,5-octadienoyl- 5-enoyl-CoAs, after dehydrogenation to 2,5-dienoyl-CoAs, CoA either by mitochondrial A3,A2-enoyl-CoA isomerase (EC can be isomerized to 2,4-dienoyl-CoAs, which are reduced by 5.3.3.8) or by peroxisomal trifunctional enzyme.
    [Show full text]
  • Cyclophilin B Trafficking Through the Secretory Pathway Is Altered
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 3931-3935, April 1994 Cell Biology Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A (peptidyl-proline cis-trans isomerase/protein folding/molecular chaperone) E. ROYDON PRICE*t, MINGJIE JIN*, DAVID LIM*, SUSMITA PATI*, CHRISTOPHER T. WALSHt, AND FRANK D. MCKEON* Departments of *Cell Biology and tBiological Chemistry and Molecular Pharmacology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Contributed by Christopher T. Walsh, January 11, 1994 ABSTRACT Cyclophilin B is targeted to the secretory chaperone has come from in vitro protein folding studies. pathway via an endoplasmic reticulum signal sequence. We Cyclophilin acts early in the folding of carbonic anhydrase to analyzed the localization and trafficking of endogenous and prevent aggregation by binding to exposed hydrophobic transfected cyclophilin B in mammalian cells. Cyclophilin B domains. Only later in the folding process does cyclophilin- accumulates both in the endoplasmic reticulum and in com- mediated proline isomerization become important (15). plexes on the plasma membrane. The immunosuppressant Like the heat shock family of proteins, the cyclophilin cyclosporin A specifically mobilizes cyclophilin B from the family of proteins contains a conserved core domain flanked endoplasmic reticulum, and promotes the secretion of cyclo- by variable N and C termini (16). These variable domains philin B into the medium. We suggest that cyclosporin A presumably encode subcellular targeting information. While competes with endogenous plasma membrane proteins for cyclophilin A is cytosolic, cyclophilins B, C, and ninaA association with cyclophilin B in the secretory pathway. These possess cleavable ER signal sequences and are directed to the findings argue in favor ofa role for cyclophilin B as a chaperone secretory pathway (4, 17-19, 32, 39, 51, 52).
    [Show full text]
  • Pin1 Inhibitors: Towards Understanding the Enzymatic
    Pin1 Inhibitors: Towards Understanding the Enzymatic Mechanism Guoyan Xu Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University In the partial fulfillment of the requirement for the degree of Doctor of Philosophy In Chemistry Felicia A Etzkorn, Chair David G. I. Kingston Neal Castagnoli Paul R. Carlier Brian E. Hanson May 6, 2010 Blacksburg, Virginia Keywords: Pin1, anti-cancer drug target, transition-state analogues, ketoamides, ketones, reduced amides, PPIase assay, inhibition Pin1 Inhibitors: Towards Understanding the Enzymatic Mechanism Guoyan Xu Abstract An important role of Pin1 is to catalyze the cis-trans isomerization of pSer/Thr- Pro bonds; as such, it plays an important role in many cellular events through the effects of conformational change on the function of its biological substrates, including Cdc25, c- Jun, and p53. The expression of Pin1 correlates with cyclin D1 levels, which contributes to cancer cell transformation. Overexpression of Pin1 promotes tumor growth, while its inhibition causes tumor cell apoptosis. Because Pin1 is overexpressed in many human cancer tissues, including breast, prostate, and lung cancer tissues, it plays an important role in oncogenesis, making its study vital for the development of anti-cancer agents. Many inhibitors have been discovered for Pin1, including 1) several classes of designed inhibitors such as alkene isosteres, non-peptidic, small molecular Pin1 inhibitors, and indanyl ketones, and 2) several natural products such as juglone, pepticinnamin E analogues, PiB and its derivatives obtained from a library screen. These Pin1 inhibitors show promise in the development of novel diagnostic and therapeutic anticancer drugs due to their ability to block cell cycle progression.
    [Show full text]
  • The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
    NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most
    [Show full text]
  • Keeping It All Going—Complement Meets Metabolism
    REVIEW published: 18 January 2017 doi: 10.3389/fimmu.2017.00001 Keeping it All Going—Complement Meets Metabolism Martin Kolev1* and Claudia Kemper1,2* 1 Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK, 2 Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work Edited by: Ping-Chih Ho, performed specifically in the last five decades identified complement also as a critical University of Lausanne, Switzerland instructor of adaptive immunity—indicating that complement’s function is likely broader Reviewed by: than initially anticipated—the dominant opinion among researchers and clinicians was Federica Marelli-Berg, that the key complement functions were in principle defined. However, there is now a Queen Mary University of London, UK growing realization that complement activity goes well beyond “classic” immune func- Claudio Mauro, tions and that this system is also required for normal (neuronal) development and activity Queen Mary
    [Show full text]
  • Capacity of Human Dendritic Cells Uptake Receptor Expression And
    The Novel Cyclophilin-Binding Drug Sanglifehrin A Specifically Affects Antigen Uptake Receptor Expression and Endocytic Capacity of Human Dendritic Cells This information is current as of September 25, 2021. Andrea M. Woltman, Nicole Schlagwein, Sandra W. van der Kooij and Cees van Kooten J Immunol 2004; 172:6482-6489; ; doi: 10.4049/jimmunol.172.10.6482 http://www.jimmunol.org/content/172/10/6482 Downloaded from References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/172/10/6482.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Novel Cyclophilin-Binding Drug Sanglifehrin A Specifically Affects Antigen Uptake Receptor Expression and Endocytic Capacity of Human Dendritic Cells1 Andrea M. Woltman,2 Nicole Schlagwein, Sandra W. van der Kooij, and Cees van Kooten Sanglifehrin A (SFA) is a recently developed immunosuppressant that belongs to the family of immunophilin-binding ligands.
    [Show full text]
  • Sphingosine-1-Phosphate Reduces CD4 T-Cell Activation in Type 1
    ORIGINAL ARTICLE Sphingosine-1-Phosphate Reduces CD4؉ T-Cell Activation in Type 1 Diabetes Through Regulation of Hypoxia-Inducible Factor Short Isoform I.1 and CD69 Suseela Srinivasan,1 David T. Bolick,1 Dmitriy Lukashev,2 Courtney Lappas,3 Michail Sitkovsky,2 Kevin R. Lynch,3 and Catherine C. Hedrick1,3 OBJECTIVES—Non-obese diabetic (NOD) mice develop spon- taneous type 1 diabetes. We have shown that sphingosine-1- phosphate (S1P) reduces activation of NOD diabetic endothelium phingosine-1-phosphate (S1P) is a bioactive lipid via the S1P1 receptor. In the current study, we tested the hypoth- that functions as an extracellular mediator and as esis that S1P could inhibit CD4ϩ T-cell activation, further reduc- an intracellular second messenger. S1P is synthe- ing inflammatory events associated with diabetes. Ssized by a wide variety of cell types, including ϩ lymphocytes, platelets, and macrophages in response to RESEARCH DESIGN AND METHODS—CD4 T-cells were isolated from diabetic and nondiabetic NOD mouse splenocytes growth factors and cytokines (1). S1P evokes diverse and treated in the absence or presence of S1P or the S1P1 cellular responses by binding to a group of five G-protein– receptor-specific agonist, SEW2871. Lymphocyte activation was coupled receptors of the endothelial differentiation gene examined using flow cytometry, cytokine bead assays, and a (Edg) family. S1P receptor expression varies among vas- lymphocyte:endothelial adhesion assay. cular cell types, with T-cells expressing only S1P1 and S1P4 (2). Recently, we reported an anti-inflammatory role RESULTS—Diabetic T-cells secreted twofold more ␥-interferon for S1P in aortic endothelial cells, most likely through (IFN-␥) and interleukin-17 than nondiabetic lymphocytes.
    [Show full text]
  • Combination of Transmembrane Activator and Calcium Modulator
    (19) TZZ ¥¥__T (11) EP 2 233 149 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 38/17 (2006.01) A61K 39/395 (2006.01) 10.02.2016 Bulletin 2016/06 C07K 19/00 (2006.01) C07K 16/28 (2006.01) A61P 37/00 (2006.01) (21) Application number: 10167232.7 (22) Date of filing: 16.10.2008 (54) Combination of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and anti-CD20 agents for treatment of autoimmune disease Kombination von Transmembran-Aktivator und Calcium-Modulator und Cyclophilin Ligand Interaktor (TACI) und anti-CD20 Mitteln zur Behandlung von Autoimmunerkrankungen Combinaison de l’activateur transmembranaire et modulateur calcique et interacteur du ligand de cyclophiline (TACI) et d’un agent anti-CD20 pour le traitement des maladies auto-immunes (84) Designated Contracting States: (74) Representative: Griffin, Philippa Jane AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Mathys & Squire LLP HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT The Shard RO SE SI SK TR 32 London Bridge Street Designated Extension States: London SE1 9SG (GB) AL BA MK RS (56) References cited: (30) Priority: 16.10.2007 US 980331 P WO-A-2005/005462 WO-A-2006/068867 WO-A2-2007/134326 (43) Date of publication of application: 29.09.2010 Bulletin 2010/39 • SILVERMAN G J ET AL: "B cell modulation in rheumatology" CURRENT OPINION IN (62) Document number(s) of the earlier application(s) in PHARMACOLOGY - CANCER/ accordance with Art.
    [Show full text]
  • Phosphoglucose Isomerase (Pgi)
    NIPRO ENZYMES PHOSPHOGLUCOSE ISOMERASE (PGI) [EC 5. 3. 1. 9] from Bacillus stearothermophilus D-Glucose 6-phosphate ↔ D-Fructose 6-phosphate SPECIFICATION State : Lyophilized Specific activity : more than 400 U/mg protein Contaminants : (as PGI activity = 100 %) Phosphofructokinase < 0.01 % 6-Phosphogluconate dehydrogenase < 0.01 % Phosphoglucomutase < 0.01 % NADPH oxidase < 0.01 % Glutathione reductase < 0.01 % PROPERTIES Molecular weight : ca. 200,000 Subunit molecular weight : ca. 54,000 Optimum pH : 9.0 - 10.0 (Fig. 1) pH stability : 6.0 - 10.5 (Fig. 2) Isoelectric point : 4.2 Thermal stability : No detectable decrease in activity up to 60 °C. (Fig. 3, 4) Michaelis constants : (95mM Tris-HCI buffer, pH 9.0, at 30 °C) Fructose 6-phospate 0.27 mM STORAGE Stable at -20 °C for at least one year NIPRO ENZYMES ASSAY Principle The change in absorbance is measured at 340nm according to the following reactions. Fructose 6-phosphate PGI Glucose 6-phosphate + G6PDH + Glucose 6-phosphate + NADP Gluconolactone 6-phosphate + NADPH + H Unit Definition One unit of activity is defined as the amount of PGI that forms 1 μmol of glucose 6-phosphate per minute at 30 °C. Solutions Ⅰ Buffer solution ; 100 mM Tris-HCl, pH 9.0 Ⅱ Fructose 6-phosphate (F6P) solution ; 100 mM (0.310 g F6P disodium salt/10 mL distilled water) + + Ⅲ NADP solution ; 22.5 mM (0.188 g NADP sodium salt∙4H2O/10 mL distilled water) Ⅳ Glucose-6-phosphate dehydrogenase (G6PDH) ; (from yeast, Roche Diagnostics K.K., No. 127 671) suspension in 3.2 M (NH4)2SO4 solution (10 mg/2 mL) approx.
    [Show full text]
  • Role of Protein Repair Enzymes in Oxidative Stress Survival And
    Shome et al. Annals of Microbiology (2020) 70:55 Annals of Microbiology https://doi.org/10.1186/s13213-020-01597-2 REVIEW ARTICLE Open Access Role of protein repair enzymes in oxidative stress survival and virulence of Salmonella Arijit Shome1* , Ratanti Sarkhel1, Shekhar Apoorva1, Sonu Sukumaran Nair2, Tapan Kumar Singh Chauhan1, Sanjeev Kumar Bhure1 and Manish Mahawar1 Abstract Purpose: Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein repair enzymes, protein L-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and methionine sulfoxide reductase (MSR). Methods: Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed. The information obtained from the research articles was analyzed and categorized into general information about the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the importance of these enzymes in Salmonella Typhimurium. Results: Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes in different bacteria revealed their importance in the virulence and oxidative stress survival.
    [Show full text]
  • Inhibitor for Protein Disulfide‑Isomerase Family a Member 3
    ONCOLOGY LETTERS 21: 28, 2021 Inhibitor for protein disulfide‑isomerase family A member 3 enhances the antiproliferative effect of inhibitor for mechanistic target of rapamycin in liver cancer: An in vitro study on combination treatment with everolimus and 16F16 YOHEI KANEYA1,2, HIDEYUKI TAKATA2, RYUICHI WADA1,3, SHOKO KURE1,3, KOUSUKE ISHINO1, MITSUHIRO KUDO1, RYOTA KONDO2, NOBUHIKO TANIAI4, RYUJI OHASHI1,3, HIROSHI YOSHIDA2 and ZENYA NAITO1,3 Departments of 1Integrated Diagnostic Pathology, and 2Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School; 3Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo 113‑8602; 4Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School Musashi Kosugi Hospital, Tokyo 211‑8533, Japan Received April 16, 2020; Accepted October 28, 2020 DOI: 10.3892/ol.2020.12289 Abstract. mTOR is involved in the proliferation of liver 90.2±10.8% by 16F16 but to 62.3±12.2% by combination treat‑ cancer. However, the clinical benefit of treatment with mTOR ment with Ev and 16F16. HuH‑6 cells were resistant to Ev, and inhibitors for liver cancer is controversial. Protein disulfide proliferation was reduced to 86.7±6.1% by Ev and 86.6±4.8% isomerase A member 3 (PDIA3) is a chaperone protein, and by 16F16. However, combination treatment suppressed prolif‑ it supports the assembly of mTOR complex 1 (mTORC1) and eration to 57.7±4.0%. Phosphorylation of S6K was reduced by stabilizes signaling. Inhibition of PDIA3 function by a small Ev in both Li‑7 and HuH‑6 cells. Phosphorylation of 4E‑BP1 molecule known as 16F16 may destabilize mTORC1 and was reduced by combination treatment in both Li‑7 and HuH‑6 enhance the effect of the mTOR inhibitor everolimus (Ev).
    [Show full text]