Early Detection of Peripheral Blood Cell Signature in Children Developing B-Cell Autoimmunity at a Young Age
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Single Cell Transcriptome Atlas of Immune Cells in Human Small
bioRxiv preprint doi: https://doi.org/10.1101/721258; this version posted August 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Single cell transcriptome atlas of immune cells in human small 2 intestine and in celiac disease 3 4 Nader Atlasy1,a,4, Anna Bujko2,4, Peter B Brazda1,a, Eva Janssen-Megens1,a , Espen S. 5 Bækkevold2, Jørgen Jahnsen3, Frode L. Jahnsen2, Hendrik G. Stunnenberg1,a,* 6 7 8 1Department of Molecular Biology, Science Faculty, Radboud University, Nijmegen, The 9 Netherlands. 10 2 Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, 11 Oslo, Norway 12 3 Department of Gastroenterology, Akershus University Hospital and University of Oslo, 13 Oslo, Norway. 14 15 acurrent address: Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 16 CS Utrecht 17 18 19 4These authors contributed equally to this study 20 21 22 *Corresponding author: [email protected] 23 24 25 26 Celiac disease (CeD) is an autoimmune disorder in which ingestion of dietary gluten 27 triggers an immune reaction in the small intestine1,2. The CeD lesion is characterized by 28 crypt hyperplasia, villous atrophy and chronic inflammation with accumulation of 29 leukocytes both in the lamina propria (LP) and in the epithelium3, which eventually 30 leads to destruction of the intestinal epithelium1 and subsequent digestive complications 31 and higher risk of non-hodgkin lymphoma4. A lifetime gluten-free diet is currently the 32 only available treatment5. Gluten-specific LP CD4 T cells and cytotoxic intraepithelial 33 CD8+ T cells are thought to be central in disease pathology1,6-8, however, CeD is a 34 complex immune-mediated disorder and to date the findings are mostly based on 35 analysis of heterogeneous cell populations and on animal models. -
Regulation of the Tyrosine Kinase Itk by the Peptidyl-Prolyl Isomerase Cyclophilin A
Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A Kristine N. Brazin, Robert J. Mallis, D. Bruce Fulton, and Amy H. Andreotti* Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 Edited by Owen N. Witte, University of California, Los Angeles, CA, and approved December 14, 2001 (received for review October 5, 2001) Interleukin-2 tyrosine kinase (Itk) is a nonreceptor protein tyrosine ulation of the cis and trans conformers. The majority of folded kinase of the Tec family that participates in the intracellular proteins for which three-dimensional structural information has signaling events leading to T cell activation. Tec family members been gathered contain trans prolyl imide bonds. The cis con- contain the conserved SH3, SH2, and catalytic domains common to formation occurs at a frequency of Ϸ6% in folded proteins (17), many kinase families, but they are distinguished by unique se- and a small subset of proteins are conformationally heteroge- quences outside of this region. The mechanism by which Itk and neous with respect to cis͞trans isomerization (18–21). Further- related Tec kinases are regulated is not well understood. Our more, the activation energy for interconversion between cis and studies indicate that Itk catalytic activity is inhibited by the peptidyl trans proline is high (Ϸ20 kcal͞mol) leading to slow intercon- prolyl isomerase activity of cyclophilin A (CypA). NMR structural version rates (22). This barrier is a rate-limiting step in protein studies combined with mutational analysis show that a proline- folding and may serve to kinetically isolate two functionally and dependent conformational switch within the Itk SH2 domain reg- conformationally distinct molecules. -
Cyclophilin B Trafficking Through the Secretory Pathway Is Altered
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 3931-3935, April 1994 Cell Biology Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A (peptidyl-proline cis-trans isomerase/protein folding/molecular chaperone) E. ROYDON PRICE*t, MINGJIE JIN*, DAVID LIM*, SUSMITA PATI*, CHRISTOPHER T. WALSHt, AND FRANK D. MCKEON* Departments of *Cell Biology and tBiological Chemistry and Molecular Pharmacology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 Contributed by Christopher T. Walsh, January 11, 1994 ABSTRACT Cyclophilin B is targeted to the secretory chaperone has come from in vitro protein folding studies. pathway via an endoplasmic reticulum signal sequence. We Cyclophilin acts early in the folding of carbonic anhydrase to analyzed the localization and trafficking of endogenous and prevent aggregation by binding to exposed hydrophobic transfected cyclophilin B in mammalian cells. Cyclophilin B domains. Only later in the folding process does cyclophilin- accumulates both in the endoplasmic reticulum and in com- mediated proline isomerization become important (15). plexes on the plasma membrane. The immunosuppressant Like the heat shock family of proteins, the cyclophilin cyclosporin A specifically mobilizes cyclophilin B from the family of proteins contains a conserved core domain flanked endoplasmic reticulum, and promotes the secretion of cyclo- by variable N and C termini (16). These variable domains philin B into the medium. We suggest that cyclosporin A presumably encode subcellular targeting information. While competes with endogenous plasma membrane proteins for cyclophilin A is cytosolic, cyclophilins B, C, and ninaA association with cyclophilin B in the secretory pathway. These possess cleavable ER signal sequences and are directed to the findings argue in favor ofa role for cyclophilin B as a chaperone secretory pathway (4, 17-19, 32, 39, 51, 52). -
Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea. -
The Immunophilins, Fk506 Binding Protein and Cyclophilin, Are Discretely Localized in the Brain: Relationship to Calcineurin
NeuroscienceVol. 62,NO. 2, pp. 569-580,1994 Elsevier Sctence Ltd Copyright 0 1994 IBRO Pergamon 0306-4522(94)E0182-4 Printed in Great Britain. All rights reserved 0306-4522194 $7.00 + 0.00 THE IMMUNOPHILINS, FK506 BINDING PROTEIN AND CYCLOPHILIN, ARE DISCRETELY LOCALIZED IN THE BRAIN: RELATIONSHIP TO CALCINEURIN T. M. DAWSON,*t J. P. STEINER,* W. E. LYONS,*11 M. FOTUHI,* M. BLUE? and S. H. SNYDER*f§l Departments of *Neuroscience, tNeurology, $Pharmacology and Molecular Sciences, and §Psychiatry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, U.S.A. (IDivision of Toxicological Science, Johns Hopkins University School of Hygiene and Public Health Abstract-The immunosuppressant drugs cyclosporin A and FK506 bind to small, predominantly soluble proteins cyclophilin and FK506 binding protein, respectively, to mediate their pharmacological actions. The immunosuppressant actions of these drugs occur through binding of cyclophilin-cyclosporinA and FK506 binding protein-FK506 complexes to the calcium-calmodulin-dependent protein phosphatase, calcineurin, inhibiting phosphatase activity, Utilizing immunohistcchemistry, in situ hybridization and autoradiography, we have localized protein and messenger RNA for FKS06 binding protein, cyclophilin and calcineurin. All three proteins and/or messages exhibit a heterogenous distribution through the brain and spinal cord, with the majority of the localizations being neuronal. We observe a striking co-localiz- ation of FK506 binding protein and calcineurin in most -
Keeping It All Going—Complement Meets Metabolism
REVIEW published: 18 January 2017 doi: 10.3389/fimmu.2017.00001 Keeping it All Going—Complement Meets Metabolism Martin Kolev1* and Claudia Kemper1,2* 1 Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK, 2 Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work Edited by: Ping-Chih Ho, performed specifically in the last five decades identified complement also as a critical University of Lausanne, Switzerland instructor of adaptive immunity—indicating that complement’s function is likely broader Reviewed by: than initially anticipated—the dominant opinion among researchers and clinicians was Federica Marelli-Berg, that the key complement functions were in principle defined. However, there is now a Queen Mary University of London, UK growing realization that complement activity goes well beyond “classic” immune func- Claudio Mauro, tions and that this system is also required for normal (neuronal) development and activity Queen Mary -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al. -
Capacity of Human Dendritic Cells Uptake Receptor Expression And
The Novel Cyclophilin-Binding Drug Sanglifehrin A Specifically Affects Antigen Uptake Receptor Expression and Endocytic Capacity of Human Dendritic Cells This information is current as of September 25, 2021. Andrea M. Woltman, Nicole Schlagwein, Sandra W. van der Kooij and Cees van Kooten J Immunol 2004; 172:6482-6489; ; doi: 10.4049/jimmunol.172.10.6482 http://www.jimmunol.org/content/172/10/6482 Downloaded from References This article cites 44 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/172/10/6482.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Novel Cyclophilin-Binding Drug Sanglifehrin A Specifically Affects Antigen Uptake Receptor Expression and Endocytic Capacity of Human Dendritic Cells1 Andrea M. Woltman,2 Nicole Schlagwein, Sandra W. van der Kooij, and Cees van Kooten Sanglifehrin A (SFA) is a recently developed immunosuppressant that belongs to the family of immunophilin-binding ligands. -
Sphingosine-1-Phosphate Reduces CD4 T-Cell Activation in Type 1
ORIGINAL ARTICLE Sphingosine-1-Phosphate Reduces CD4؉ T-Cell Activation in Type 1 Diabetes Through Regulation of Hypoxia-Inducible Factor Short Isoform I.1 and CD69 Suseela Srinivasan,1 David T. Bolick,1 Dmitriy Lukashev,2 Courtney Lappas,3 Michail Sitkovsky,2 Kevin R. Lynch,3 and Catherine C. Hedrick1,3 OBJECTIVES—Non-obese diabetic (NOD) mice develop spon- taneous type 1 diabetes. We have shown that sphingosine-1- phosphate (S1P) reduces activation of NOD diabetic endothelium phingosine-1-phosphate (S1P) is a bioactive lipid via the S1P1 receptor. In the current study, we tested the hypoth- that functions as an extracellular mediator and as esis that S1P could inhibit CD4ϩ T-cell activation, further reduc- an intracellular second messenger. S1P is synthe- ing inflammatory events associated with diabetes. Ssized by a wide variety of cell types, including ϩ lymphocytes, platelets, and macrophages in response to RESEARCH DESIGN AND METHODS—CD4 T-cells were isolated from diabetic and nondiabetic NOD mouse splenocytes growth factors and cytokines (1). S1P evokes diverse and treated in the absence or presence of S1P or the S1P1 cellular responses by binding to a group of five G-protein– receptor-specific agonist, SEW2871. Lymphocyte activation was coupled receptors of the endothelial differentiation gene examined using flow cytometry, cytokine bead assays, and a (Edg) family. S1P receptor expression varies among vas- lymphocyte:endothelial adhesion assay. cular cell types, with T-cells expressing only S1P1 and S1P4 (2). Recently, we reported an anti-inflammatory role RESULTS—Diabetic T-cells secreted twofold more ␥-interferon for S1P in aortic endothelial cells, most likely through (IFN-␥) and interleukin-17 than nondiabetic lymphocytes. -
Combination of Transmembrane Activator and Calcium Modulator
(19) TZZ ¥¥__T (11) EP 2 233 149 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 38/17 (2006.01) A61K 39/395 (2006.01) 10.02.2016 Bulletin 2016/06 C07K 19/00 (2006.01) C07K 16/28 (2006.01) A61P 37/00 (2006.01) (21) Application number: 10167232.7 (22) Date of filing: 16.10.2008 (54) Combination of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and anti-CD20 agents for treatment of autoimmune disease Kombination von Transmembran-Aktivator und Calcium-Modulator und Cyclophilin Ligand Interaktor (TACI) und anti-CD20 Mitteln zur Behandlung von Autoimmunerkrankungen Combinaison de l’activateur transmembranaire et modulateur calcique et interacteur du ligand de cyclophiline (TACI) et d’un agent anti-CD20 pour le traitement des maladies auto-immunes (84) Designated Contracting States: (74) Representative: Griffin, Philippa Jane AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Mathys & Squire LLP HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT The Shard RO SE SI SK TR 32 London Bridge Street Designated Extension States: London SE1 9SG (GB) AL BA MK RS (56) References cited: (30) Priority: 16.10.2007 US 980331 P WO-A-2005/005462 WO-A-2006/068867 WO-A2-2007/134326 (43) Date of publication of application: 29.09.2010 Bulletin 2010/39 • SILVERMAN G J ET AL: "B cell modulation in rheumatology" CURRENT OPINION IN (62) Document number(s) of the earlier application(s) in PHARMACOLOGY - CANCER/ accordance with Art.