A History of the Connectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dialetheists' Lies About the Liar
PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false. -
Gibbardian Collapse and Trivalent Conditionals
Gibbardian Collapse and Trivalent Conditionals Paul Égré* Lorenzo Rossi† Jan Sprenger‡ Abstract This paper discusses the scope and significance of the so-called triviality result stated by Allan Gibbard for indicative conditionals, showing that if a conditional operator satisfies the Law of Import-Export, is supraclassical, and is stronger than the material conditional, then it must collapse to the material conditional. Gib- bard’s result is taken to pose a dilemma for a truth-functional account of indicative conditionals: give up Import-Export, or embrace the two-valued analysis. We show that this dilemma can be averted in trivalent logics of the conditional based on Reichenbach and de Finetti’s idea that a conditional with a false antecedent is undefined. Import-Export and truth-functionality hold without triviality in such logics. We unravel some implicit assumptions in Gibbard’s proof, and discuss a recent generalization of Gibbard’s result due to Branden Fitelson. Keywords: indicative conditional; material conditional; logics of conditionals; triva- lent logic; Gibbardian collapse; Import-Export 1 Introduction The Law of Import-Export denotes the principle that a right-nested conditional of the form A → (B → C) is logically equivalent to the simple conditional (A ∧ B) → C where both antecedentsare united by conjunction. The Law holds in classical logic for material implication, and if there is a logic for the indicative conditional of ordinary language, it appears Import-Export ought to be a part of it. For instance, to use an example from (Cooper 1968, 300), the sentences “If Smith attends and Jones attends then a quorum *Institut Jean-Nicod (CNRS/ENS/EHESS), Département de philosophie & Département d’études cog- arXiv:2006.08746v1 [math.LO] 15 Jun 2020 nitives, Ecole normale supérieure, PSL University, 29 rue d’Ulm, 75005, Paris, France. -
Frontiers of Conditional Logic
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Frontiers of Conditional Logic Yale Weiss The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/2964 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Frontiers of Conditional Logic by Yale Weiss A dissertation submitted to the Graduate Faculty in Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 ii c 2018 Yale Weiss All Rights Reserved iii This manuscript has been read and accepted by the Graduate Faculty in Philosophy in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Professor Gary Ostertag Date Chair of Examining Committee Professor Nickolas Pappas Date Executive Officer Professor Graham Priest Professor Melvin Fitting Professor Edwin Mares Professor Gary Ostertag Supervisory Committee The City University of New York iv Abstract Frontiers of Conditional Logic by Yale Weiss Adviser: Professor Graham Priest Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional|especially counterfactual|expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that cat- alyzed the rapid maturation of the field. -
Chapter 5: Methods of Proof for Boolean Logic
Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs. -
Glossary for Logic: the Language of Truth
Glossary for Logic: The Language of Truth This glossary contains explanations of key terms used in the course. (These terms appear in bold in the main text at the point at which they are first used.) To make this glossary more easily searchable, the entry headings has ‘::’ (two colons) before it. So, for example, if you want to find the entry for ‘truth-value’ you should search for ‘:: truth-value’. :: Ambiguous, Ambiguity : An expression or sentence is ambiguous if and only if it can express two or more different meanings. In logic, we are interested in ambiguity relating to truth-conditions. Some sentences in natural languages express more than one claim. Read one way, they express a claim which has one set of truth-conditions. Read another way, they express a different claim with different truth-conditions. :: Antecedent : The first clause in a conditional is its antecedent. In ‘(P ➝ Q)’, ‘P’ is the antecedent. In ‘If it is raining, then we’ll get wet’, ‘It is raining’ is the antecedent. (See ‘Conditional’ and ‘Consequent’.) :: Argument : An argument is a set of claims (equivalently, statements or propositions) made up from premises and conclusion. An argument can have any number of premises (from 0 to indefinitely many) but has only one conclusion. (Note: This is a somewhat artificially restrictive definition of ‘argument’, but it will help to keep our discussions sharp and clear.) We can consider any set of claims (with one claim picked out as conclusion) as an argument: arguments will include sets of claims that no-one has actually advanced or put forward. -
What Is the Value of Vagueness? By
THEORIA, 2021, 87, 752–780 doi:10.1111/theo.12313 What Is the Value of Vagueness? by DAVID LANIUS Karlsruher Institut fur Technologie Abstract: Classically, vagueness has been considered something bad. It leads to the Sorites para- dox, borderline cases, and the (apparent) violation of the logical principle of bivalence. Neverthe- less, there have always been scholars claiming that vagueness is also valuable. Many have pointed out that we could not communicate as successfully or efficiently as we do if we would not use vague language. Indeed, we often use vague terms when we could have used more precise ones instead. Many scholars (implicitly or explicitly) assume that we do so because their vagueness has a positive function. But how and in what sense can vagueness be said to have a function or value? This paper is an attempt to give an answer to this question. After clarifying the concepts of vague- ness and value, it examines nine arguments for the value of vagueness, which have been discussed in the literature. The (negative) result of this examination is, however, that there is not much rea- son to believe that vagueness has a value or positive function at all because none of the arguments is conclusive. A tenth argument that has not been discussed so far seems most promising but rests on a solely strategic notion of function. Keywords: vagueness, value of vagueness, indeterminacy, sorties paradox, function of vagueness 1. Introduction Almost since the beginning of the philosophical debate on vagueness, most peo- ple have seen it as a problem. It leads to the Sorites paradox, borderline cases, and the (apparent) violation of the logical principle of bivalence. -
On Basic Probability Logic Inequalities †
mathematics Article On Basic Probability Logic Inequalities † Marija Boriˇci´cJoksimovi´c Faculty of Organizational Sciences, University of Belgrade, Jove Ili´ca154, 11000 Belgrade, Serbia; [email protected] † The conclusions given in this paper were partially presented at the European Summer Meetings of the Association for Symbolic Logic, Logic Colloquium 2012, held in Manchester on 12–18 July 2012. Abstract: We give some simple examples of applying some of the well-known elementary probability theory inequalities and properties in the field of logical argumentation. A probabilistic version of the hypothetical syllogism inference rule is as follows: if propositions A, B, C, A ! B, and B ! C have probabilities a, b, c, r, and s, respectively, then for probability p of A ! C, we have f (a, b, c, r, s) ≤ p ≤ g(a, b, c, r, s), for some functions f and g of given parameters. In this paper, after a short overview of known rules related to conjunction and disjunction, we proposed some probabilized forms of the hypothetical syllogism inference rule, with the best possible bounds for the probability of conclusion, covering simultaneously the probabilistic versions of both modus ponens and modus tollens rules, as already considered by Suppes, Hailperin, and Wagner. Keywords: inequality; probability logic; inference rule MSC: 03B48; 03B05; 60E15; 26D20; 60A05 1. Introduction The main part of probabilization of logical inference rules is defining the correspond- Citation: Boriˇci´cJoksimovi´c,M. On ing best possible bounds for probabilities of propositions. Some of them, connected with Basic Probability Logic Inequalities. conjunction and disjunction, can be obtained immediately from the well-known Boole’s Mathematics 2021, 9, 1409. -
7.1 Rules of Implication I
Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
False Dilemma Wikipedia Contents
False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also -
Notes on Proof Theory
Notes on Proof Theory Master 1 “Informatique”, Univ. Paris 13 Master 2 “Logique Mathématique et Fondements de l’Informatique”, Univ. Paris 7 Damiano Mazza November 2016 1Last edit: March 29, 2021 Contents 1 Propositional Classical Logic 5 1.1 Formulas and truth semantics . 5 1.2 Atomic negation . 8 2 Sequent Calculus 10 2.1 Two-sided formulation . 10 2.2 One-sided formulation . 13 3 First-order Quantification 16 3.1 Formulas and truth semantics . 16 3.2 Sequent calculus . 19 3.3 Ultrafilters . 21 4 Completeness 24 4.1 Exhaustive search . 25 4.2 The completeness proof . 30 5 Undecidability and Incompleteness 33 5.1 Informal computability . 33 5.2 Incompleteness: a road map . 35 5.3 Logical theories . 38 5.4 Arithmetical theories . 40 5.5 The incompleteness theorems . 44 6 Cut Elimination 47 7 Intuitionistic Logic 53 7.1 Sequent calculus . 55 7.2 The relationship between intuitionistic and classical logic . 60 7.3 Minimal logic . 65 8 Natural Deduction 67 8.1 Sequent presentation . 68 8.2 Natural deduction and sequent calculus . 70 8.3 Proof tree presentation . 73 8.3.1 Minimal natural deduction . 73 8.3.2 Intuitionistic natural deduction . 75 1 8.3.3 Classical natural deduction . 75 8.4 Normalization (cut-elimination in natural deduction) . 76 9 The Curry-Howard Correspondence 80 9.1 The simply typed l-calculus . 80 9.2 Product and sum types . 81 10 System F 83 10.1 Intuitionistic second-order propositional logic . 83 10.2 Polymorphic types . 84 10.3 Programming in system F ...................... 85 10.3.1 Free structures . -
Methods of Proof Direct Direct Contrapositive Contradiction Pc P→ C ¬ P ∨ C ¬ C → ¬ Pp ∧ ¬ C
Proof Methods Methods of proof Direct Direct Contrapositive Contradiction pc p→ c ¬ p ∨ c ¬ c → ¬ pp ∧ ¬ c TT T T T F Section 1.6 & 1.7 T F F F F T FT T T T F FF T T T F MSU/CSE 260 Fall 2009 1 MSU/CSE 260 Fall 2009 2 How are these questions related? Proof Methods h1 ∧ h2 ∧ … ∧ hn ⇒ c ? 1. Does p logically imply c ? Let p = h ∧ h ∧ … ∧ h . The following 2. Is the proposition (p → c) a tautology? 1 2 n propositions are equivalent: 3. Is the proposition (¬ p ∨ c) is a tautology? 1. p ⇒ c 4. Is the proposition (¬ c → ¬ p) is a tautology? 2. (p → c) is a tautology. Direct 5. Is the proposition (p ∧ ¬ c) is a contradiction? 3. (¬ p ∨ c) is a tautology. Direct 4. (¬ c → ¬ p)is a tautology. Contrapositive 5. (p ∧ ¬ c) is a contradiction. Contradiction MSU/CSE 260 Fall 2009 3 MSU/CSE 260 Fall 2009 4 © 2006 by A-H. Esfahanian. All Rights Reserved. 1- Formal Proofs Formal Proof A proof is equivalent to establishing a logical To prove: implication chain h1 ∧ h2 ∧ … ∧ hn ⇒ c p1 Premise p Tautology Given premises (hypotheses) h1 , h2 , … , hn and Produce a series of wffs, 2 conclusion c, to give a formal proof that the … . p1 , p2 , pn, c . p k, k’, Inf. Rule hypotheses imply the conclusion, entails such that each wff pr is: r . establishing one of the premises or . a tautology, or pn _____ h1 ∧ h2 ∧ … ∧ hn ⇒ c an axiom/law of the domain (e.g., 1+3=4 or x > x+1 ) ∴ c justified by definition, or logically equivalent to or implied by one or more propositions pk where 1 ≤ k < r.