<<

Philosophy 240: Symbolic Hamilton College Fall 2014 Russell Marcus

Reference Sheeet for What Follows

Names of Languages

PL: Propositional Logic M: Monadic (First-Order) Predicate Logic F: Full (First-Order) Predicate Logic FF: Full (First-Order) Predicate Logic with functors S: Second-Order Predicate Logic

Basic Truth Tables

- á á @ â á w â á e â á / â 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0

Rules of

Modus Ponens (MP) Conjunction (Conj) á e â á á / â â / á A â

Modus Tollens (MT) Addition (Add) á e â á / á w â -â / -á Simplification (Simp) Disjunctive (DS) á A â / á á w â -á / â (CD) (á e â) (HS) (ã e ä) á e â á w ã / â w ä â e ã / á e ã Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 2

Rules of Equivalence

DeMorgan’s Laws (DM) Contraposition (Cont) -(á A â) W -á w -â á e â W -â e -á -(á w â) W -á A -â Material Implication (Impl) Association (Assoc) á e â W -á w â á w (â w ã) W (á w â) w ã á A (â A ã) W (á A â) A ã Material Equivalence (Equiv) á / â W (á e â) A (â e á) Distribution (Dist) á / â W (á A â) w (-á A -â) á A (â w ã) W (á A â) w (á A ã) á w (â A ã) W (á w â) A (á w ã) (Exp) á e (â e ã) W (á A â) e ã Commutativity (Com) á w â W â w á (Taut) á A â W â A á á W á A á á W á w á (DN) á W --á

Six Derived Rules for the Biconditional

Rules of Inference Rules of Equivalence

Biconditional (BMP) Biconditional DeMorgan’s Law (BDM) á / â -(á / â) W -á / â á / â

Biconditional (BMT) Biconditional Commutativity (BCom) á / â á / â W â / á -á / -â

Biconditional Hypothetical Syllogism (BHS) Biconditional Contraposition (BCont) á / â á / â W -á / -â â / ã / á / ã Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 3

Rules for Instantiation and Generalization

Universal Instantiation (UI)

(œá)öá for any variable á, any formula öcontaining á, and öâ any singular term â

Universal Generalization (UG)

öâ for any variable â, any formula öcontaining â, and (œá)öá for any variable á

Never UG within the scope of an assumption for conditional or indirect proof on a variable that is free in the first line of the assumption. Never UG on a variable when there is a constant present, and the variable was free when the constant was introduced.

Existential Generalization (EG)

öâ for any singular term â, any formula ö containing â, and (›á)öá for any variable á

Existential Instantiation (EI)

(›á)öá for any variable á, any formula ö containing á, and öâ any new constant â

Quantifier Equivalence (QE)

(œá)öá W -(›á)-öá (›á)öá W -(œá)-öá (œá)-öá W -(›á)öá (›á)-öá W -(œá)öá Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 4

Rules of Passage

For all variables á and all formulas à and Ä:

RP1: (›á)(à w Ä) W (›á)à w (›á)Ä RP2: (œá)(à C Ä) W (œá)à C (œá)Ä

For all variables á, all formulas à containing á, and all formulas Ä not containing á:

RP3: (›á)(Ä C Ãá) W Ä C (›á)Ãá RP4: (œá)(Ä C Ãá) W Ä C (œá)Ãá RP5: (›á)(Ä w Ãá) W Ä w (›á)Ãá RP6: (œá)(Ä w Ãá) W Ä w (œá)Ãá RP7: (›á)(Ä e Ãá) W Ä e (›á)Ãá RP8: (œá)(Ä e Ãá) W Ä e (œá)Ãá RP9: (›á)(Ãá e Ä) W (œá)Ãá e Ä RP10: (œá)(Ãá e Ä) W (›á)Ãá e Ä

Here are versions of each of the rules that are less-meta-linguistic and maybe easier to read:

RP1: (›x)(Px w Qx) W (›x)Px w (›x)Qx RP2: (œx)(Px C Qx) W (œx)Px C (œx)Qx RP3: (›x)(öC Px) W ö C (›x)Px RP4: (œx)(ö C Px) W ö C (œx)Px RP5: (›x)(ö w Px) W ö w (›x)Px RP6: (œx)(ö w Px) W ö w (œx)Px RP7: (›x)(ö e Px) W ö e (›x)Px RP8: (œx)(ö e Px) W ö e (œx)Px RP9: (›x)(Px e ö) W (œx)Px e ö RP10: (œx)(Px e ö) W (›x)Px e ö

Rules Governing the Identity Predicate (ID)

IDr. Reflexivity: á=á

IDs. Symmetry: á=â W â=á

IDi. Indiscernibility of Identicals

öá á=â / öâ