Formal Logic: Quantifiers, Predicates, and Validity

Total Page:16

File Type:pdf, Size:1020Kb

Formal Logic: Quantifiers, Predicates, and Validity Formal Logic: Quantifiers, Predicates, and Validity CS 130 – Discrete Structures Variables and Statements • Variables: A variable is a symbol that stands for an individual in a collection or set. For example, the variable x may stand for one of the days. We may let x = Monday, x = Tuesday, etc. • We normally use letters at the end of the alphabet as variables, such as x, y, z. • A collection of objects is called the domain of objects. For the above example, the days in the week is the domain of variable x. CS 130 – Discrete Structures 55 Quantifiers • Propositional wffs have rather limited expressive power. E.g., “For every x, x > 0”. • Quantifiers: Quantifiers are phrases that refer to given quantities, such as "for some" or "for all" or "for every", indicating how many objects have a certain property. • Two kinds of quantifiers: – Universal Quantifier: represented by , “for all”, “for every”, “for each”, or “for any”. – Existential Quantifier: represented by , “for some”, “there exists”, “there is a”, or “for at least one”. CS 130 – Discrete Structures 56 Predicates • Predicate: It is the verbal statement which describes the property of a variable. Usually represented by the letter P, the notation P(x) is used to represent some unspecified property or predicate that x may have. – P(x) = x has 30 days. – P(April) = April has 30 days. – What is the truth value of (x)P(x) where x is all the months and P(x) = x has less than 32 days • Combining the quantifier and the predicate, we get a complete statement of the form (x)P(x) or (x)P(x) • The collection of objects is called the domain of interpretation, and it must contain at least one object. CS 130 – Discrete Structures 57 Truth Values of the Expressions • What is the truth value of (x)P(x) in the following interpretations? – P(x): x is yellow; the domain of interpretation is the collection of all flowers. – P(x): x is a plant; the domain of interpretation is the collection of all flowers. – P(x): x is either positive or negative; the domain of interpretation consists of the integers. • Can you find one interpretation in which both (x)P(x) is true and (x)P(x) is false? • Can you find one interpretation in which both (x)P(x) is true and (x)P(x) is false? CS 130 – Discrete Structures 58 Unary, Binary,…, N-ary Predicates • Predicates involving properties of a single variable: unary predicates • Binary, ternary and n-ary predicates are also possible • (x) (y)Q(x,y) is a binary predicate. This expression reads as “for every x there exists a y such that Q(x,y)” • Assume Q(x,y) is the property that x < y, what’re the interpretations? – ( x)( y) Q(x, y), ( y) ( x) Q(x, y), and ( x)( x) Q(x, x) – We cannot collapse separate variables together into one without changing the nature of the expression • Constants are also allowed in expressions, such as a, b, c, 0, 1, 2, etc. CS 130 – Discrete Structures 59 Interpretation • Formal definition: An interpretation for an expression involving predicates consists of the following: – A collection of objects, called domain of interpretation, which must include at least one object. – An assignment of a property of the objects in the domain to each predicate in the expression. – An assignment of a particular object in the domain to each constant symbol in the expression. • Predicate wffs can be built similar to propositional wffs using logical connectives with predicates and quantifiers. • Must obey the rules of syntax to be considered a wff • Examples of predicate wffs – (x)[P(x) Q(x)] – (x) ((y)[P(x,y) V Q(x,y)] R(x)) – S(x,y) Λ R(x,y) CS 130 – Discrete Structures 60 Scope of a Variable in an Expression • The parentheses or brackets are used wisely to identify the scope of the variable. – (x) ((y)[P(x,y) V Q(x,y)] R(x)) • Scope of (y) is P(x,y) V Q(x,y) while the scope of (x) is the entire expression – (x)S(x) V (y)R(y) • Scope of (x) is S(x) while the scope of (y) is R(y) – (x)[P(x,y) (y) Q(x,y)] • Scope of variable y is not defined for P(x,y) hence y is called a free variable. Such expressions might not have a truth value at all. • P(x): x > 0; P(y)^ P(5), P(y) V P(5). – What is the truth of the wff (x)(A(x) Λ (y)[B(x,y) C(y)]) , where A(x) is “x > 0” , B(x, y) is “x > y”, C(y) is “y 0”, and x is the domain of positive integers and y is the domain of all integers? CS 130 – Discrete Structures 61 Translation of Verbal Statements to Symbolic Form Using Intermediate Statements • “Every person is nice” can be rephrased as “For any thing, if it is a person, then it is nice”. So, if P(x) is “x is a person” and Q(x) be “x is nice”, the statement can be symbolized as – (x)[P(x) Q(x)] • Variations: “All persons are nice” or “Each person is nice”. • “There is a nice person” can be rewritten as “There exists something that is both a person and nice” in symbolic form – (x)[P(x) Λ Q(x)] • Variations: “Some persons are nice” or “There are nice persons” • What would the following forms mean for the example above? – (x) [P(x) Λ Q(x)] is too strong – (x)[P(x) Q(x)] will be true if there are no persons in the world but that is not the case. • So almost always, goes with Λ (conjunction) and goes with (implication) • Can be confusing, so remember to frame the statement in different forms as possible CS 130 – Discrete Structures 62 More On Translation • The word “only” can be tricky depending on its presence in the statement: – X loves only Y If X loves anything, then that thing is Y – Only X loves Y If anything loves Y, then it is X – X only loves Y If X does anything to Y, then it is love • Example for forming symbolic forms from predicate symbols: – D(x) is “x is dog” – R(x) is “x is a rabbit” – C(x,y) is “x chases y” • All dogs chase all rabbits – For anything, if it is a dog, then for any other thing, if it is a rabbit, then the dog chases it (x)[D(x) (y)(R(y) C(x,y))] • Some dogs chase all rabbits – There is something that is a dog and for any other thing, if that thing is a rabbit, then the dog chases it (x)[D(x) Λ (y)(R(y) C(x,y))] • Only dogs chase rabbits – For anything, if it is a rabbit then, if anything chases it, that thing is a dog (y) [R(y) (x) (C(x, y) D(x))] – Or, for any two things, if one is a rabbit and the other chases it, then the other is a dog (y) (x)[R(y) Λ C(x,y) D(x)] CS 130 – Discrete Structures 63 Negation of Statements • A(x): Everything is beautiful – Negation will be “it is false that everything is beautiful”, i.e. “something is not beautiful” – In symbolic form, [(x)A(x)]’ (x)[A(x)]’ – Similarly, negation of “Something is beautiful” is “Nothing is beautiful” or “Nothing is beautiful” – Hence, [(x)A(x)]’ (x)[A(x)]’ • What is the negation of “Everybody loves somebody sometime” – Everybody hates somebody sometime – Somebody loves everybody all the time – Everybody hates everybody all the time – Somebody hates everybody all the time CS 130 – Discrete Structures 64 More Examples on Negation • What is the negation of the following statements? – Some pictures are old and faded. • Every picture is not old or not faded. – All people are tall and thin. • Someone is short or fat. – Some students eat only pizza. • Every student eats something which is not a pizza – Only students eat pizza. • There is a non-student who eats pizza. CS 130 – Discrete Structures 65 Class Exercises • S(x): x is a student For anything, if it is a student, then it is • I(x): x is intelligent intelligent (x)[S(x) I (x)] • M(x): x likes music There is something that is intelligent and it is a student and it likes • Write wffs than express music (x)[I(x) Λ S(x) Λ M(x)] the following statements: – All students are For anything, if that thing likes music, intelligent. then it is a student and it is not – Some intelligent intelligent students like music. (x)(M(x) S(x) Λ [I (x)]´) – Everyone who likes music is a stupid For any thing, if it likes music, then it student. is a student and it is intelligent – Only intelligent students (x)(M(x) S(x) Λ I(x)) like music. CS 130 – Discrete Structures 66 Validity • Analogous to a tautology of propositional logic • Truth of a predicate wff depends on the interpretation • A predicate wff is valid if it is true in all possible interpretations just like a propositional wff is true if it is true for all rows of the truth table • A valid predicate wff is intrinsically true Propositional Wffs Predicate Wffs Truth Values True or false – depends on True, false or neither(if the the truth value of statement wff has a free variable) letters Intrinsic truth Tautology- true for all truth Valid wff- true for all values of its statements interpretations Methodology Truth table to determine if it No algorithm to determine is a tautology validity CS 130 – Discrete Structures 67 Validity Examples • (x)P(x) (x)P(x) – This is valid because if every object of the domain has a certain property, then there exists an object of the domain that has the same property.
Recommended publications
  • Lecture 1: Informal Logic
    Lecture 1: Informal Logic 1 Sentential/Propositional Logic Definition 1.1 (Statement). A statement is anything we can say, write, or otherwise express that can be either true or false. Remark 1. Veracity of a statement doesn't depend on one's ability to verify it's truth or falsity. Example 1.2. The expression \Venkatesh is twenty years old" is a statement, because it is either true or false. We will be making following two assumptions when dealing with statements. Assumptions 1.3 (Bivalence). Every statement is either true or false. Assumptions 1.4. No statement is both true and false. One of the consequences of the bivalence assumption is that if a statement is not true, then it must be false. Hence, to prove that something is true, it would suffice to prove that it is not false. 1.1 Combination of Statements In this subsection, we would look at five basic ways of combining two statements P and Q to form new statements. We can form more complicated compound statements by using combinations of these basic operations. Definition 1.5 (Conjunction). We define conjunction of statements P and Q to be the statement that is true if both P and Q are true, and is false otherwise. Conjunction of of P and Q is denoted P ^ Q, and read \P and Q." Remark 2. Logical and is different from it's colloquial usages for therefore or for relations. 1 Definition 1.6 (Disjunction). We define disjunction of statements P and Q to be the statement that is true if either P is true or Q is true or both are true, and is false otherwise.
    [Show full text]
  • Aristotle's Illicit Quantifier Shift: Is He Guilty Or Innocent
    Aristos Volume 1 Issue 2 Article 2 9-2015 Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent Jack Green The University of Notre Dame Australia Follow this and additional works at: https://researchonline.nd.edu.au/aristos Part of the Philosophy Commons, and the Religious Thought, Theology and Philosophy of Religion Commons Recommended Citation Green, J. (2015). "Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent," Aristos 1(2),, 1-18. https://doi.org/10.32613/aristos/ 2015.1.2.2 Retrieved from https://researchonline.nd.edu.au/aristos/vol1/iss2/2 This Article is brought to you by ResearchOnline@ND. It has been accepted for inclusion in Aristos by an authorized administrator of ResearchOnline@ND. For more information, please contact [email protected]. Green: Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent ARISTOTLE’S ILLICIT QUANTIFIER SHIFT: IS HE GUILTY OR INNOCENT? Jack Green 1. Introduction Aristotle’s Nicomachean Ethics (from hereon NE) falters at its very beginning. That is the claim of logicians and philosophers who believe that in the first book of the NE Aristotle mistakenly moves from ‘every action and pursuit aims at some good’ to ‘there is some one good at which all actions and pursuits aim.’1 Yet not everyone is convinced of Aristotle’s seeming blunder.2 In lieu of that, this paper has two purposes. Firstly, it is an attempt to bring some clarity to that debate in the face of divergent opinions of the location of the fallacy; some proposing it lies at I.i.1094a1-3, others at I.ii.1094a18-22, making it difficult to wade through the literature.
    [Show full text]
  • Section 1.4: Predicate Logic
    Section 1.4: Predicate Logic January 22, 2021 Abstract We now consider the logic associated with predicate wffs, including a new set of derivation rules for demonstrating validity (the analogue of tautology in the propositional calculus) – that is, for proving theorems! 1 Derivation rules • First of all, all the rules of propositional logic still hold. Whew! Propositional wffs are simply boring, variable-less predicate wffs. • Our author suggests the following “general plan of attack”: – strip off the quantifiers – work with the separate wffs – insert quantifiers as necessary Now, how may we legitimately do so? Consider the classic syllo- gism: a. (All) Humans are mortal. b. Socrates is human. Therefore Socrates is mortal. The way we reason is that the rule “Humans are mortal” applies to the specific example “Socrates”; hence this Socrates is mortal. We might write this as a. (∀x)(H(x) → M(x)) b. H(s) Therefore M(s). It seems so obvious! But how do we justify that in a proof se- quence? • New rules for predicate logic: in the following, you should un- derstand by the symbol x in P (x) an expression with free variable x, possibly containing other (quantified) variables: e.g. P (x) ≡ (∀y)(∃z)Q(x,y,z) (1) – Universal Instantiation: from (∀x)P (x) deduce P (t). Caveat: t must not already appear as a variable in the ex- pression for P (x): in the equation above, (1), it would not do to deduce P (y) or P (z), as those variables appear in the expression (in a quantified fashion) already.
    [Show full text]
  • Scope Ambiguity in Syntax and Semantics
    Scope Ambiguity in Syntax and Semantics Ling324 Reading: Meaning and Grammar, pg. 142-157 Is Scope Ambiguity Semantically Real? (1) Everyone loves someone. a. Wide scope reading of universal quantifier: ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] b. Wide scope reading of existential quantifier: ∃y[person(y) ∧∀x[person(x) → love(x,y)]] 1 Could one semantic representation handle both the readings? • ∃y∀x reading entails ∀x∃y reading. ∀x∃y describes a more general situation where everyone has someone who s/he loves, and ∃y∀x describes a more specific situation where everyone loves the same person. • Then, couldn’t we say that Everyone loves someone is associated with the semantic representation that describes the more general reading, and the more specific reading obtains under an appropriate context? That is, couldn’t we say that Everyone loves someone is not semantically ambiguous, and its only semantic representation is the following? ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] • After all, this semantic representation reflects the syntax: In syntax, everyone c-commands someone. In semantics, everyone scopes over someone. 2 Arguments for Real Scope Ambiguity • The semantic representation with the scope of quantifiers reflecting the order in which quantifiers occur in a sentence does not always represent the most general reading. (2) a. There was a name tag near every plate. b. A guard is standing in front of every gate. c. A student guide took every visitor to two museums. • Could we stipulate that when interpreting a sentence, no matter which order the quantifiers occur, always assign wide scope to every and narrow scope to some, two, etc.? 3 Arguments for Real Scope Ambiguity (cont.) • But in a negative sentence, ¬∀x∃y reading entails ¬∃y∀x reading.
    [Show full text]
  • Logic and Proof
    CS2209A 2017 Applied Logic for Computer Science Lecture 11, 12 Logic and Proof Instructor: Yu Zhen Xie 1 Proofs • What is a theorem? – Lemma, claim, etc • What is a proof? – Where do we start? – Where do we stop? – What steps do we take? – How much detail is needed? 2 The truth 3 Theories and theorems • Theory: axioms + everything derived from them using rules of inference – Euclidean geometry, set theory, theory of reals, theory of integers, Boolean algebra… – In verification: theory of arrays. • Theorem: a true statement in a theory – Proved from axioms (usually, from already proven theorems) Pythagorean theorem • A statement can be a theorem in one theory and false in another! – Between any two numbers there is another number. • A theorem for real numbers. False for integers! 4 Axioms example: Euclid’s postulates I. Through 2 points a line segment can be drawn II. A line segment can be extended to a straight line indefinitely III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre IV. All right angles are congruent V. Parallel postulate 5 Some axioms for propositional logic • For any formulas A, B, C: – A ∨ ¬ – . – . – A • Also, like in arithmetic (with as +, as *) – , – Same holds for ∧. – Also, • And unlike arithmetic – ( ) 6 Counterexamples • To disprove a statement, enough to give a counterexample: a scenario where it is false – To disprove that • Take = ", = #, • Then is false, but B is true. – To disprove that if %& '( ) &, ( , then '( %& ) &, ( , • Set the domain of x and y to be {0,1} • Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
    [Show full text]
  • CS 205 Sections 07 and 08 Supplementary Notes on Proof Matthew Stone March 1, 2004 [email protected]
    CS 205 Sections 07 and 08 Supplementary Notes on Proof Matthew Stone March 1, 2004 [email protected] 1 Propositional Natural Deduction The proof systems that we have been studying in class are called natural deduction. This is because they permit the same lines of reasoning and the same form of argument that you see in ordinary mathematics. Students generally find it easier to represent their mathematical ideas in natural deduction than in other ways of doing proofs. In these systems the proof is a sequence of lines. Each line has a number, a formula, and a justification that explains why the formula can be introduced into the proof. The simplest kind of justification is that the formula is a premise, and the argument depends on it. Another common justification is modus ponens, which derives the consequent of a conditional in the proof whose antecedent is also part of the proof. Here is a simple proof with these two rules used together. Example 1 1P! QPremise 2Q! RPremise 3P Premise 4 Q Modus ponens 1,3 5 R Modus ponens 2,4 This proof assumes that P is true, that P ! Q,andthatQ ! R. It uses modus ponens to conclude that R must then be true. Some inference rules in natural deduction allow assumptions to be made for the purposes of argument. These inference rules create a subproof. A subproof begins with a new assumption. This assumption can be used just within this subproof. In addition, all the assumption made in outer proofs can be used in the subproof.
    [Show full text]
  • Philosophy 109, Modern Logic Russell Marcus
    Philosophy 240: Symbolic Logic Hamilton College Fall 2014 Russell Marcus Reference Sheeet for What Follows Names of Languages PL: Propositional Logic M: Monadic (First-Order) Predicate Logic F: Full (First-Order) Predicate Logic FF: Full (First-Order) Predicate Logic with functors S: Second-Order Predicate Logic Basic Truth Tables - á á @ â á w â á e â á / â 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 Rules of Inference Modus Ponens (MP) Conjunction (Conj) á e â á á / â â / á A â Modus Tollens (MT) Addition (Add) á e â á / á w â -â / -á Simplification (Simp) Disjunctive Syllogism (DS) á A â / á á w â -á / â Constructive Dilemma (CD) (á e â) Hypothetical Syllogism (HS) (ã e ä) á e â á w ã / â w ä â e ã / á e ã Philosophy 240: Symbolic Logic, Prof. Marcus; Reference Sheet for What Follows, page 2 Rules of Equivalence DeMorgan’s Laws (DM) Contraposition (Cont) -(á A â) W -á w -â á e â W -â e -á -(á w â) W -á A -â Material Implication (Impl) Association (Assoc) á e â W -á w â á w (â w ã) W (á w â) w ã á A (â A ã) W (á A â) A ã Material Equivalence (Equiv) á / â W (á e â) A (â e á) Distribution (Dist) á / â W (á A â) w (-á A -â) á A (â w ã) W (á A â) w (á A ã) á w (â A ã) W (á w â) A (á w ã) Exportation (Exp) á e (â e ã) W (á A â) e ã Commutativity (Com) á w â W â w á Tautology (Taut) á A â W â A á á W á A á á W á w á Double Negation (DN) á W --á Six Derived Rules for the Biconditional Rules of Inference Rules of Equivalence Biconditional Modus Ponens (BMP) Biconditional DeMorgan’s Law (BDM) á / â -(á / â) W -á / â á / â Biconditional Modus Tollens (BMT) Biconditional Commutativity (BCom) á / â á / â W â / á -á / -â Biconditional Hypothetical Syllogism (BHS) Biconditional Contraposition (BCont) á / â á / â W -á / -â â / ã / á / ã Philosophy 240: Symbolic Logic, Prof.
    [Show full text]
  • Chapter 13: Formal Proofs and Quantifiers
    Chapter 13: Formal Proofs and Quantifiers § 13.1 Universal quantifier rules Universal Elimination (∀ Elim) ∀x S(x) ❺ S(c) Here x stands for any variable, c stands for any individual constant, and S(c) stands for the result of replacing all free occurrences of x in S(x) with c. Example 1. ∀x ∃y (Adjoins(x, y) ∧ SameSize(y, x)) 2. ∃y (Adjoins(b, y) ∧ SameSize(y, b)) ∀ Elim: 1 General Conditional Proof (∀ Intro) ✾c P(c) Where c does not occur outside Q(c) the subproof where it is introduced. ❺ ∀x (P(x) → Q(x)) There is an important bit of new notation here— ✾c , the “boxed constant” at the beginning of the assumption line. This says, in effect, “let’s call it c.” To enter the boxed constant in Fitch, start a new subproof and click on the downward pointing triangle ❼. This will open a menu that lets you choose the constant you wish to use as a name for an arbitrary object. Your subproof will typically end with some sentence containing this constant. In giving the justification for the universal generalization, we cite the entire subproof (as we do in the case of → Intro). Notice that although c may not occur outside the subproof where it is introduced, it may occur again inside a subproof within the original subproof. Universal Introduction (∀ Intro) ✾c Where c does not occur outside the subproof where it is P(c) introduced. ❺ ∀x P(x) Remember, any time you set up a subproof for ∀ Intro, you must choose a “boxed constant” on the assumption line of the subproof, even if there is no sentence on the assumption line.
    [Show full text]
  • Discrete Mathematics, Chapter 1.4-1.5: Predicate Logic
    Discrete Mathematics, Chapter 1.4-1.5: Predicate Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 1 / 23 Outline 1 Predicates 2 Quantifiers 3 Equivalences 4 Nested Quantifiers Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 2 / 23 Propositional Logic is not enough Suppose we have: “All men are mortal.” “Socrates is a man”. Does it follow that “Socrates is mortal” ? This cannot be expressed in propositional logic. We need a language to talk about objects, their properties and their relations. Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 3 / 23 Predicate Logic Extend propositional logic by the following new features. Variables: x; y; z;::: Predicates (i.e., propositional functions): P(x); Q(x); R(y); M(x; y);::: . Quantifiers: 8; 9. Propositional functions are a generalization of propositions. Can contain variables and predicates, e.g., P(x). Variables stand for (and can be replaced by) elements from their domain. Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 4 / 23 Propositional Functions Propositional functions become propositions (and thus have truth values) when all their variables are either I replaced by a value from their domain, or I bound by a quantifier P(x) denotes the value of propositional function P at x. The domain is often denoted by U (the universe). Example: Let P(x) denote “x > 5” and U be the integers. Then I P(8) is true. I P(5) is false.
    [Show full text]
  • Predicate Logic
    Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers. Let a predicate P: Z -> Prop be given by P(x) = x>3. The predicate itself is neither true or false. However, for any given integer the predicate evaluates to a truth value. For example, P(4) is true and P(2) is false Universal Quantifier (1) Let P be a predicate with domain D. The statement “P(x) holds for all x in D” can be written shortly as ∀xP(x). Universal Quantifier (2) Suppose that P(x) is a predicate over a finite domain, say D={1,2,3}. Then ∀xP(x) is equivalent to P(1)⋀P(2)⋀P(3). Universal Quantifier (3) Let P be a predicate with domain D. ∀xP(x) is true if and only if P(x) is true for all x in D. Put differently, ∀xP(x) is false if and only if P(x) is false for some x in D. Existential Quantifier The statement P(x) holds for some x in the domain D can be written as ∃x P(x) Example: ∃x (x>0 ⋀ x2 = 2) is true if the domain is the real numbers but false if the domain is the rational numbers. Logical Equivalence (1) Two statements involving quantifiers and predicates are logically equivalent if and only if they have the same truth values no matter which predicates are substituted into these statements and which domain is used.
    [Show full text]
  • The Comparative Predictive Validity of Vague Quantifiers and Numeric
    c European Survey Research Association Survey Research Methods (2014) ISSN 1864-3361 Vol.8, No. 3, pp. 169-179 http://www.surveymethods.org Is Vague Valid? The Comparative Predictive Validity of Vague Quantifiers and Numeric Response Options Tarek Al Baghal Institute of Social and Economic Research, University of Essex A number of surveys, including many student surveys, rely on vague quantifiers to measure behaviors important in evaluation. The ability of vague quantifiers to provide valid information, particularly compared to other measures of behaviors, has been questioned within both survey research generally and educational research specifically. Still, there is a dearth of research on whether vague quantifiers or numeric responses perform better in regards to validity. This study examines measurement properties of frequency estimation questions through the assessment of predictive validity, which has been shown to indicate performance of competing question for- mats. Data from the National Survey of Student Engagement (NSSE), a preeminent survey of university students, is analyzed in which two psychometrically tested benchmark scales, active and collaborative learning and student-faculty interaction, are measured through both vague quantifier and numeric responses. Predictive validity is assessed through correlations and re- gression models relating both vague and numeric scales to grades in school and two education experience satisfaction measures. Results support the view that the predictive validity is higher for vague quantifier scales, and hence better measurement properties, compared to numeric responses. These results are discussed in light of other findings on measurement properties of vague quantifiers and numeric responses, suggesting that vague quantifiers may be a useful measurement tool for behavioral data, particularly when it is the relationship between variables that are of interest.
    [Show full text]
  • Chapter 4, Propositional Calculus
    ECS 20 Chapter 4, Logic using Propositional Calculus 0. Introduction to Discrete Mathematics. 0.1. Discrete = Individually separate and distinct as opposed to continuous and capable of infinitesimal change. Integers vs. real numbers, or digital sound vs. analog sound. 0.2. Discrete structures include sets, permutations, graphs, trees, variables in computer programs, and finite-state machines. 0.3. Five themes: logic and proofs, discrete structures, combinatorial analysis, induction and recursion, algorithmic thinking, and applications and modeling. 1. Introduction to Logic using Propositional Calculus and Proof 1.1. “Logic” is “the study of the principles of reasoning, especially of the structure of propositions as distinguished from their content and of method and validity in deductive reasoning.” (thefreedictionary.com) 2. Propositions and Compound Propositions 2.1. Proposition (or statement) = a declarative statement (in contrast to a command, a question, or an exclamation) which is true or false, but not both. 2.1.1. Examples: “Obama is president.” is a proposition. “Obama will be re-elected.” is not a proposition. 2.1.2. “This statement is false.” is a paradox that many would not consider a proposition. 2.1.3. For ECS 20, we will use p, q, and r to symbolize propositions, subpropositions, or logical variables which take true or false values. 2.2. Compound Proposition = a proposition that has its truth value completely determined by the truth values of two or more subpropositions and the operators (also called connectives) connecting them. 3. Basic Logical Operations 3.1. Conjunction = = “and.” If both p and q are true, then p q is true, otherwise p q is false.
    [Show full text]