Using Ecosystem Service Bundles to Evaluate Spatial and Temporal Impacts Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crop Systems on a County-Scale
Supporting information Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration Bing Gaoa,b, c, Tao Huangc,d, Xiaotang Juc*, Baojing Gue,f, Wei Huanga,b, Lilai Xua,b, Robert M. Reesg, David S. Powlsonh, Pete Smithi, Shenghui Cuia,b* a Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China b Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China c College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China d College of Geography Science, Nanjing Normal University, Nanjing 210046, China e Department of Land Management, Zhejiang University, Hangzhou, 310058, PR China f School of Agriculture and Food, The University of Melbourne, Victoria, 3010 Australia g SRUC, West Mains Rd. Edinburgh, EH9 3JG, Scotland, UK h Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5 2JQ. UK i Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK Bing Gao & Tao Huang contributed equally to this work. Corresponding author: Xiaotang Ju and Shenghui Cui College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China. Phone: +86-10-62732006; Fax: +86-10-62731016. E-mail: [email protected] Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. Phone: +86-592-6190777; Fax: +86-592-6190977. E-mail: [email protected] S1. The proportions of the different cropping systems to national crop yields and sowing area Maize was mainly distributed in the “Corn Belt” from Northeastern to Southwestern China (Liu et al., 2016a). -
Ÿþm Icrosoft W
第 26 卷 第 9 期 农 业 工 程 学 报 Vol.26 No.9 72 2010 年 9 月 Transactions of the CSAE Sep. 2010 Models of soil and water conservation and ecological restoration in the loess hilly region of China Dang Xiaohu1,2,Liu Guobin2※,Xue Sha2,3 (1. School of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; 2. Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; 3. Institute of Water Resources and Hydro-electric, Xi’an University of Technology, Xi’an 710048, China) Abstract: Ecological degradation characterized by severe soil erosion and water loss is the most imposing ecological-economic issue in the Loess Hilly Region; the soil and water conservation (SWC) and ecological restoration are crucial solutions to this issue. It is of importance to explore SWC models for ecological reconstruction compatible with local socioeconomic and environmental conditions. The paper reviewed on SWC and ecological rehabilitation researches and practices and mainly concerned on eight small-scale (small catchments) models and Yan’an Meso-scale model in the Loess Hilly Region. To evaluate the environmental and socioeconomic impacts of these models, their validities were examined using the participatory rural appraisal. The results indicated that SWC and ecological restoration at different scales have played important roles both in local economic development and environmental improvement and provided an insight into sustainable economic development on the Loess plateau in the future. Furthermore, this paper strengthens our belief that, under improved socioeconomic conditions, SWC and ecological reconstruction can be made sustainable, leading to a reversal of the present ecological degradation. -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Study on Carbon Sequestration Benefit of Converting Farmland to Forest in Yan’An
E3S Web of Conferences 275, 02005 (2021) https://doi.org/10.1051/e3sconf/202127502005 EILCD 2021 Study on Carbon Sequestration Benefit of Converting Farmland to Forest in Yan’an Zhou M.C1, Han H.Z1*, Yang X.J1, Chen C1 1School of Tourism & Research Institute of Human Geography, Xi’an International Studies University, Xi’an, China Abstract. This paper takes Yan'anas the study area, analyses the current situation of the policy, calculates the carbon sequestration value by using the afforestation area and woodland area in Yanan in 2019, and explores its carbon emission trading potential. The conclusions are as follows: (1) the amount of carbon sequestration increased by 203575.5 t due to the afforestation in 2019 in Yan'an. The green economy income of Yan'an can be increased by 5.8528 million RMB, because of it. The carbon sequestration value of total woodland is 120 million RMB, which can increase the forestry output value of Yan'an by 19.32%. (2) The new carbon sequestration benefit of northern area is higher than that of southern area in Yan’an; the highest carbon sequestration benefit of returning farmland to forest isWuqi County’s 35307.29t, and its value is 1.015 million RMB, it can be increased by 0.15% of the green economy income. (3) The industrial counties Huangling County and Huanglong County, the industrial counties Luochuan County and Yichuan County carry out carbon trading respectively, under the condition of ensuring the output value of the secondary industry in the industrial county, it can increase the green economy income of the total output value of Huanglong County and Yichuan County by 0.73% respectively. -
8-Day Shaanxi Adventure Tour
www.lilysunchinatours.com 8-day Shaanxi Adventure Tour Basics Tour Code: LCT-XL-8D-01 Duration: 8 days Attractions: Terracotta Warriors and Horses Museum, City Wall, Mt.Huashan, Yellow Emperor (Huangdi)’s Mausoleum, Hukou Waterfall, Valley of the Waves Jingbian, Hanyangling Mausoleum Overview There is a folk belief that ancient treasures can be found in literally every inch of the Shaanxi soil. The fact is Shaanxi Province isn’t just about history and culture; it also boasts the various spectacular natural landscapes like precipitous and physically-challenging Mount Huashan, magnificently surging Hukou Waterfall, unique and locally-featured Yan’an Cave Dwellings, and one of most significant nature’s creations - Valley of the Waves in Jingbian. This trip will take you to not only visit the world-famous Terra-cotta Warriors and Horses Museum but, most importantly, bring you to go outside Xian city and enjoy the grand views northern Shaanxi has to offer! Highlights Immerse yourself in the deep history and culture of Qin Dynasty and its great wonder -Terracotta Army; Challenge yourself by trekking on one of most precipitous mountains in China - Mount Huashan; Revere the Mausoleum of Huangdi, the Ancestor of Chinese Ethnic Peoples; Visit the mother river of China, Yellow River and be awed by the grand Hukou Waterfall; Tel: +86 18629295068 1 Email: [email protected]; [email protected] www.lilysunchinatours.com Overnight at a local Cave House Hotel in Yan’an city and have a campfire party with locals; Witness the scenic wonder of the Valley of the Waves in Jingbian that created by millions of years of water, sand and wind. -
An Approach for Detecting Five Typical Vegetation Types on the Chinese Loess Plateau Using Landsat TM Data
Environ Monit Assess (2015) 187: 577 DOI 10.1007/s10661-015-4799-5 An approach for detecting five typical vegetation types on the Chinese Loess Plateau using Landsat TM data Zhi-Jie Wang & Ju-Ying Jiao & Bo Lei & Yuan Su Received: 11 January 2015 /Accepted: 12 August 2015 /Published online: 20 August 2015 # Springer International Publishing Switzerland 2015 Abstract Remote sensing can provide large-scale spa- Huangling County, and Luochuan County) on the tial data for the detection of vegetation types. In this Loess Plateau. The results showed that the VTI can study, two shortwave infrared spectral bands (TM5 and effectively detect the five vegetation types with an av- TM7) and one visible spectral band (TM3) of Landsat 5 erage accuracy exceeding 80 % and a representativeness TM data were used to detect five typical vegetation above 85 %. As a new approach for monitoring vegeta- types (communities dominated by Bothriochloa tion types using remote sensing at a larger regional ischaemum, Artemisia gmelinii, Hippophae scale, VTI can play an important role in the assessment rhamnoides, Robinia pseudoacacia,andQuercus of vegetation restoration and in the investigation of the liaotungensis) using 270 field survey data in the Yanhe spatial distribution and community diversity of vegeta- watershed on the Loess Plateau. The relationships be- tion on the Loess Plateau. tween 200 field data points and their corresponding radiance reflectance were analyzed, and the equation . termed the vegetation type index (VTI) was generated. Keywords Remote sensing Vegetation type index . The VTI values of five vegetation types were calculated, Vegetation index Spectral bands Yanhe watershed and the accuracy was tested using the remaining 70 field data points. -
Poverty, Gender, and Social Analysis
Shaanxi Green Intelligent Transport and Logistics Management Demonstration Project (RRP PRC 51401-002) Poverty, Gender, and Social Analysis Project Number: 51401-002 April 2020 PRC: Shaanxi Green Intelligent Transport and Logistics Management Demonstration Project CURRENCY EQUIVALENTS (As of 1 April 2020) Currency unit – yuan (CNY) CNY1.00 = $0.1408 $1.00 = CNY7.0999 ABBREVIATIONS ADB Asian Development Bank CNY Chinese Yuan SPG Shaanxi Province Government DI Design Institute EA Executing Agency EIA Environmental Impact Assessment EMP Environmental Management Plan EPB Environmental Protection Bureau FCUC Foreign Capital Utilization Center FGDs Focus Group Discussions FSR Feasibility Study Report SGAP Social and Gender Action Plan IAs Implementing Agencies M&E Monitoring and Evaluation PAM Project Administration Manual PRC People’s Republic of China PGSA Poverty, Gender and Social Analysis RRP Report and Recommendation of The President SNWDP South-To-North Water Diversion Project SPS Safeguard Policy Statement TABLE OF CONTENTS 1 BACKGROUND AND INTRODUCITON .................................................................................. 1 1.1 Proposed Project and Outputs ...................................................................................... 1 1.2 Objectives and Contents of PGSA ................................................................................ 3 1.3 Methodologies ................................................................................................................ 3 2 SOCIAL AND ECONOMIC PROFILES -
Study on the Potential of Cultivated Land Quality Improvement Based on a Geological Detector
Received: 11 August 2017 Revised: 29 October 2017 Accepted: 31 December 2017 DOI: 10.1002/gj.3160 SPECIAL ISSUE ARTICLE Study on the potential of cultivated land quality improvement based on a geological detector Xuefeng Yuan | Yajing Shao | Xindong Wei | Rui Hou | Yue Ying | Yonghua Zhao School of Earth Science and Resources, Chang'an University, Xi'an, China The restrictive factors of cultivated land are key to the improvement of cultivated land quality, Correspondence scientific implementation of the land consolidation projects, and the efficiency of remediation. Xindong Wei, School of Earth Science and On the basis of the provincial plots of cultivated land quality in Shaanxi Province, this paper Resources, Chang'an University, Xi'an, analysed the improvement potential of cultivated land quality from the perspective of restrictive 710054, China. Email: [email protected] factors. First, the potential exponential model was used to determine the distribution of various Funding information combinations of restrictive factors at the provincial scale. Second, a geological detector was used the State Key Laboratory Fund of the Key to determine the influences of different combinations of restrictive factors on cultivated land Laboratory of Degraded and Unused Land quality. Finally, through the investigation of cultivated land consolidation projects that have been Consolidation Engineering, Grant/Award implemented in the study area, the improvement potential level of different combinations of Number: SXDJ2017‐4; Shaanxi Key Science and Technology Innovation Team Project, restrictive factors was determined. The degree of influence of the single restrictive factor or com- Grant/Award Number: 2016 KCT‐23 binations of restrictive factors on the quality of cultivated land was improved, and the difference of the quality of cultivated land in different index areas could be revealed as well. -
Minimum Wage Standards in China August 11, 2020
Minimum Wage Standards in China August 11, 2020 Contents Heilongjiang ................................................................................................................................................. 3 Jilin ............................................................................................................................................................... 3 Liaoning ........................................................................................................................................................ 4 Inner Mongolia Autonomous Region ........................................................................................................... 7 Beijing......................................................................................................................................................... 10 Hebei ........................................................................................................................................................... 11 Henan .......................................................................................................................................................... 13 Shandong .................................................................................................................................................... 14 Shanxi ......................................................................................................................................................... 16 Shaanxi ...................................................................................................................................................... -
Supporting Early Carbon Capture Utilisation and Storage Development in Non-Power Industrial Sectors, Shaanxi Province, China AUTHORS Professor Hongguang JIN, Dr
Supporting early Carbon Capture Utilisation and Storage development in non-power industrial sectors, Shaanxi Province, China AUTHORS Professor Hongguang JIN, Dr. Lin GAO, Dr. Sheng LI Institute of Engineering Thermophysics, Chinese Academy of Sciences Emiel van Sambeek Azure International Richard Porter University of Leeds Tom Mikunda, Jan Wilco Dijkstra, Heleen de Coninck, Daan Jansen Energy research Centre of the Netherlands Publication date June 2012 Report no. 012 Publisher The Centre for Low Carbon Futures 2012 For citation and reprints, please contact the Centre for Low Carbon Futures. This project is funded by the British Embassy Beijing as part of the China Prosperity SPF Programme. The results of this report are based on the collaborative efforts of the Institute of Engineering Thermophysics, Chinese Academy of Sciences, Azure International, the University of Leeds, the Energy research Centre of the Netherlands and has been lead by the Centre for Low Carbon Futures (CLCF). The project is also grateful for support from the Global CCS Institute. CONTENTS Introduction .............................................................................................................................................01 CHAPTER ONE: GAPS AND BARRIERS TO CARBON CAPTURE UTILISATION AND STORAGE IN NON-POWER INDUSTRIAL SECTORS OF SHAANXI PROVINCE, CHINA 1. Background and Introduction................................................................................................................06 1.1. CCUS and its significance to the Shaanxi Province, -
Soil Erosion
The fourth session Regional Effects of Grain for Green Program (GGP) LI Rui Institute of Soil and Water Conservation (ISWC), NWSUAF, CAS/MWR, Yangling, Shaanxi. China CONTENTS(目录) BACKGROUND(背景) PROGRESSES (进展) IMPACTS (效应) DISCUSSION (讨论) 背景 Background of Grain for Green Project (GGP) 13% 54% 33% In China 2/3 of land are in mountains, hills and plateau regions, 135 million ha. Farmland is on slope land, taking about 50% of total cultivated land 2 陕西的水土流失与土地退化Soil loss from cultivation on steep slope lands 陡坡耕地产生严重的水土流失 Cultivation on slope land to cause soil erosion 2018/11/15 To build terraced fields on slope land was one of the important measures to reduce soil erosion 坡地修成梯田可有效地减少水土流失 2018/11/15 Terraced fields can control erosion and increase grain yield , but it is consuming. 梯田可以控制土壤 侵蚀、增加产量,但需要大量 人力、财力和时间 2018/11/15 In 1999, The Premier Zhu Rongji inspected soil and water conservation on the Loess Plateau with the Governors of Shaanxi Province 朱镕基和陕西省领导视察黄土高原的水土保持, 对大面积的水土流失陷入了深深的思虑 They were thinking how to do with the broad area suffering soil erosion! 2018/11/15 考察后视察水土保持研究所并与科学家讨论 提出实施退耕还林(草)工程 After inspection to Loess Plateau they visited our Institute and discussed this issue with scientists. Then the Grain for Green Project was proposed . To convey cropping land on steep slopes to planting trees/grass (more than 25 degree in southwest region; more than 15 degree in northwest region)南方25以上、北方15度以上的坡耕地都要逐步实行退耕还林(草) Compensation (国家补贴政策) Government will give some compensation including grain(粮食), cash(现金) and seedling fee(种苗费) South China (南方) North China (北方) • Grain 2250 kg/ha.year • Grain 1500 kg/ha.year • Cash 1875 yuan/ha.year • Cash 1350 yuan/ha.year • Seedling fee 750 yuan/ha • Seedling fee 750 yuan/ha CONTENTS(目录) BACKGROUND(背景) PROGRESSES (进展) IMPACTS (效应) DISCUSSION (讨论) Progresses (进展) • To the end of 2013, about 15 million ha of slope farmland has been conversed into forest/grassland • 17.5 million ha of barren mountains and hills were planted trees/grass. -
Ecosystem Services and Ecological Restoration in the Northern Shaanxi Loess Plateau, China, in Relation to Climate Fluctuation and Investments in Natural Capital
Article Ecosystem Services and Ecological Restoration in the Northern Shaanxi Loess Plateau, China, in Relation to Climate Fluctuation and Investments in Natural Capital Hejie Wei 1,2, Weiguo Fan 1,2, Zhenyu Ding 3, Boqi Weng 4, Kaixiong Xing 5, Xuechao Wang 1,2, Nachuan Lu 1,2, Sergio Ulgiati 6 and Xiaobin Dong 1,2,7,* 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Beijing 100875, China; [email protected] (H.W.); [email protected] (W.F.); [email protected] (X.W.); [email protected] (N.L.) 2 College of Resources Science and Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 3 Department of Environmental Engineering, Chinese Academy for Environmental Planning, Beijing 100012, China; [email protected] 4 Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; [email protected] 5 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 6 Department of Science and Technology, Parthenope University of Naples, Centro Direzionale-Isola C4, 80143 Napoli, Italy; [email protected] 7 Joint Center for Global change and China Green Development, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected]; Tel.: +86-10-5880-7058 Academic Editors: Vincenzo Torretta Received: 07 December 2016; Accepted: 19 January 2017; Published: 1 February 2017 Abstract: Accurately identifying the spatiotemporal variations and driving factors of ecosystem services (ES) in ecological restoration is important for ecosystem management and the sustainability of nature conservation strategies.