Beyond the Basic Stuff with Python
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-78987-5 — How to Write Good Programs Perdita Stevens Index More Information
Cambridge University Press 978-1-108-78987-5 — How to Write Good Programs Perdita Stevens Index More Information Index A bold page number indicates where a term is deined. abstract syntax tree, 105 C, 35, 45, 189 abstraction, 29, 141 C♯,35 see also model C++, 35, 190 agile, 64, 159, 198 camel case, 89 algorithm, 29, 147, 148, 196 change, 141, 144, 197 Alice, 44 checklist, 127 arguments, 25,28 cloud, 66 functions as, 45 code order of, 108 commented-out, 62 type of, 41, 108 completion, 52,90 assert, 71 dead, 64 assignment, 131 line length, 99 vs. comparison, 126 reputable body of, 46, 63, 94, 99 Atom, 18 spaghetti, 98, 122 autocompletion, 52,90 unreachable, 64 autosave, 57 code sense, 3, 133 coding, 4 backups, 65 coding dojo, 153 bar, see metasyntactic variable coding interview, 148 BASIC, 44, 125 command line, 15, 49 baz, see metasyntactic variable comment, 27, 70, 85–88 BlueJ, 44, 54 commenting-out, 62 breakpoint, 111 comparison bug, 32, 101, 190, 191 of booleans, 126 after removing, 124 of objects, 130 avoiding, 138 vs. assignment, 126 avoiding recurrence of, 77 compiler, 13, 35 in compiler, 109 bug, 109 removing, 122 incremental, 51 the Lauren bug, 78 computational complexity, 148 see also debugging content assist, 52,90 build, 51, 53 contract, 88 202 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-78987-5 — How to Write Good Programs Perdita Stevens Index More Information Index 203 crash, 118 time, 146 currying, 23 user, 146 Emacs, 18, 49, 58, 90, 95 data science, 192 embedded -
Section “Creating R Packages” in Writing R Extensions
Writing R Extensions Version 3.1.0 Under development (2013-03-29) R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. Copyright c 1999{2013 R Core Team i Table of Contents Acknowledgements ::::::::::::::::::::::::::::::::: 1 1 Creating R packages:::::::::::::::::::::::::::: 2 1.1 Package structure :::::::::::::::::::::::::::::::::::::::::::::: 3 1.1.1 The `DESCRIPTION' file :::::::::::::::::::::::::::::::::::: 4 1.1.2 Licensing:::::::::::::::::::::::::::::::::::::::::::::::::: 9 1.1.3 The `INDEX' file :::::::::::::::::::::::::::::::::::::::::: 10 1.1.4 Package subdirectories:::::::::::::::::::::::::::::::::::: 11 1.1.5 Data in packages ::::::::::::::::::::::::::::::::::::::::: 14 1.1.6 Non-R scripts in packages :::::::::::::::::::::::::::::::: 15 1.2 Configure and cleanup :::::::::::::::::::::::::::::::::::::::: 16 1.2.1 Using `Makevars'::::::::::::::::::::::::::::::::::::::::: 19 1.2.1.1 OpenMP support:::::::::::::::::::::::::::::::::::: -
Debreach: Selective Dictionary Compression to Prevent BREACH and CRIME
debreach: Selective Dictionary Compression to Prevent BREACH and CRIME A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Brandon Paulsen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Professor Peter A.H. Peterson July 2017 © Brandon Paulsen 2017 Acknowledgements First, I’d like to thank my advisor Peter Peterson and my lab mate Jonathan Beaulieu for their insights and discussion throughout this research project. Their contributions have undoubtedly improved this work. I’d like to thank Peter specifically for renew- ing my motivation when my project appeared to be at a dead–end. I’d like to thank Jonathan specifically for being my programming therapist. Next, I’d like to thank my family and friends for constantly supporting my aca- demic goals. In particular, I’d like to thank my mom and dad for their emotional support and encouragement. I’d like to thank my brother Derek and my friend Paul “The Wall” Vaynshenk for being great rock climbing partners, which provided me the escape from work that I needed at times. I’d like to again thank Jonathan Beaulieu and Xinru Yan for being great friends and for many games of Settlers of Catan. I’d like to thank Laura Krebs for helping me to discover my passion for academics and learning. Finally, I’d like to thank my fellow graduate students and the computer science faculty of UMD for an enjoyable graduate program. I’d also like to thank Professor Bethany Kubik and Professor Haiyang Wang for serving on my thesis committee. -
Turbo.Lua Documentation Release 2.1.2
Turbo.lua Documentation Release 2.1.2 John Abrahamsen Nov 02, 2018 Contents 1 Hello World 3 2 Supported Architectures 5 3 Supported Operating Systems7 4 Installation 9 5 Object oriented Lua 11 6 Packaging 13 7 Dependencies 15 8 License 17 9 Tutorials 19 9.1 Get Started With Turbo.......................................... 19 9.1.1 Installing Turbo......................................... 19 9.1.2 Hello World........................................... 20 9.1.3 Request parameters....................................... 20 9.1.4 Routes.............................................. 20 9.1.5 Serving Static Files....................................... 21 9.1.6 JSON Output.......................................... 22 9.2 Asynchronous modules......................................... 22 9.2.1 Overview............................................ 22 9.2.2 Example module........................................ 24 10 API documentation 27 10.1 Turbo.lua API Versioning........................................ 27 10.1.1 Preliminaries.......................................... 27 10.1.2 Module Version......................................... 27 10.2 turbo.web – Core web framework.................................... 28 10.2.1 RequestHandler class...................................... 28 10.2.2 HTTPError class........................................ 32 10.2.3 StaticFileHandler class..................................... 32 10.2.4 RedirectHandler class...................................... 33 10.2.5 Application class........................................ 33 -
Fundamental Data Structures Contents
Fundamental Data Structures Contents 1 Introduction 1 1.1 Abstract data type ........................................... 1 1.1.1 Examples ........................................... 1 1.1.2 Introduction .......................................... 2 1.1.3 Defining an abstract data type ................................. 2 1.1.4 Advantages of abstract data typing .............................. 4 1.1.5 Typical operations ...................................... 4 1.1.6 Examples ........................................... 5 1.1.7 Implementation ........................................ 5 1.1.8 See also ............................................ 6 1.1.9 Notes ............................................. 6 1.1.10 References .......................................... 6 1.1.11 Further ............................................ 7 1.1.12 External links ......................................... 7 1.2 Data structure ............................................. 7 1.2.1 Overview ........................................... 7 1.2.2 Examples ........................................... 7 1.2.3 Language support ....................................... 8 1.2.4 See also ............................................ 8 1.2.5 References .......................................... 8 1.2.6 Further reading ........................................ 8 1.2.7 External links ......................................... 9 1.3 Analysis of algorithms ......................................... 9 1.3.1 Cost models ......................................... 9 1.3.2 Run-time analysis -
Section “Creating R Packages” in Writing R Extensions
Writing R Extensions Version 3.0.0 RC (2013-03-28) R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the con- ditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another lan- guage, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. Copyright c 1999{2013 R Core Team i Table of Contents Acknowledgements ::::::::::::::::::::::::::::::::: 1 1 Creating R packages:::::::::::::::::::::::::::: 2 1.1 Package structure :::::::::::::::::::::::::::::::::::::::::::::: 3 1.1.1 The `DESCRIPTION' file :::::::::::::::::::::::::::::::::::: 4 1.1.2 Licensing:::::::::::::::::::::::::::::::::::::::::::::::::: 9 1.1.3 The `INDEX' file :::::::::::::::::::::::::::::::::::::::::: 10 1.1.4 Package subdirectories:::::::::::::::::::::::::::::::::::: 11 1.1.5 Data in packages ::::::::::::::::::::::::::::::::::::::::: 14 1.1.6 Non-R scripts in packages :::::::::::::::::::::::::::::::: 15 1.2 Configure and cleanup :::::::::::::::::::::::::::::::::::::::: 16 1.2.1 Using `Makevars'::::::::::::::::::::::::::::::::::::::::: 19 1.2.1.1 OpenMP support:::::::::::::::::::::::::::::::::::: 22 1.2.1.2 -
Writing R Extensions
Writing R Extensions Version 4.1.1 Patched (2021-09-22) R Core Team This manual is for R, version 4.1.1 Patched (2021-09-22). Copyright c 1999{2021 R Core Team Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into an- other language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team. i Table of Contents Acknowledgements ::::::::::::::::::::::::::::::::::::::::::::::::: 1 1 Creating R packages ::::::::::::::::::::::::::::::::::::::::::: 2 1.1 Package structure :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 1.1.1 The DESCRIPTION file ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 1.1.2 Licensing ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 8 1.1.3 Package Dependencies::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 9 1.1.3.1 Suggested packages:::::::::::::::::::::::::::::::::::::::::::::::::::::: 12 1.1.4 The INDEX file ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 13 1.1.5 Package subdirectories ::::::::::::::::::::::::::::::::::::::::::::::::::::::: -
Year of the Horse. the Months of The
here are many animals named in the Template of the Hidden Texts which appear anomalous to the context. It turns out they are Chinese years or Celtic symbols (such as salmon) or constellations. Also there are several codes which the word HORSE indicates. The months of the horse,which happen to be the same horses as those of the "apocalypse" (the "unveiling"), the constellations: of the winged horse Scheat of Pegasus, the colt Equulus the foal, the horse's blaze Kurnah in Cepheus, Hippocampus the seahorse, Leucippe the white horse, Alpha Andromeda and then there is the Year of the Horse. The months of the horse have far too many ciphers ~ nag, Dan, ornament, Ma, ears, Be, Elm, shoe, Ara, Bau and all the other words which mean Gemini, Cancer, Virgo, Libra/October, Scorpio and Sagittarius. Something big is slotted for Sagittarius. The White Horse Warning at Uffington is Sagittarius, complete with the large cross of the bow and arrow. Sagittarius is not shown at all on the zodiac column of St John The Divine. This forum is a collection of all the lines with the word horse or fourteen coded within them. Before we get started on the year which is the beginning of the end for our current lifestyle, a pertinent detail will be outlined. The matter of the "shar" of the Nibiru system. The shar is the "year", the orbit this solar system keeps. Many people have many different numbers of our years in one shart. It seems the Anakim (the biblical spelling for a civilization who have as many names as there are tribes on Earth) do have some control over their system. -
Language and Framework Support for Reviewably- Secure Software Systems
Language and Framework Support for Reviewably- Secure Software Systems Adrian Mettler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2012-244 http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-244.html December 13, 2012 Copyright © 2012, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Language and Framework Support for Reviewably-Secure Software Systems by Adrian Matthew Mettler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Wagner, Chair Professor Deirdre Mulligan Professor Dawn Song Fall 2012 Language and Framework Support for Reviewably-Secure Software Systems Copyright 2012 by Adrian Matthew Mettler 1 Abstract Language and Framework Support for Reviewably-Secure Software Systems by Adrian Matthew Mettler Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Wagner, Chair My thesis is that languages and frameworks can and should be designed to make it easier for programmers to write reviewably secure systems. A system is reviewably secure if its security is easy for an experienced programmer to verify, given access to the source code. -
A Glossary for IWGS (Auto-Generated)
A Glossary for IWGS (Auto-Generated) Michael Kohlhase Computer Science, FAU Erlangen-Nürnberg https://kwarc.info/kohlhase July 1, 2021 Preface This document contains an English glossary for the course Informatische Werkzeuge in den Geistes- und Sozialwissenschaften at FAU Erlangen-Nürnberg (IWGS). It is automatically generated from the sources of the IWGS course notes and should be up-to-date with the course progress. The glossary contains definitions for all technical terms used in the course, both theones defined in the course, as well as the ones presupposed. The latter should be relatively few,since IWGS is intended as a beginner’s course. 1 1 Glossary for IWGS Given a description logic D, a D-ontology consists of D-ontology–a terminology (or TBox): concepts and roles and a set of concept axioms that describe them, and – assertions (or ABox): a set of individuals and statements about concept membership and role relationships for them. To make the role of arguments extremely clear, we write functions in λ-notation. For f = f(x; E) j x 2 Xg, where E is an expression, we write λx 2 X:E. n n-dim Cartesianλ-notation space n-dim Cartesian space: A := fha1; : : : ; ani j 1≤i≤n ) ai 2 Ag, call ha1; : : : ; ani a vector n-dimensional Cartesian space An n-dimensional Cartesian product A1 × ::: × An is called a n-dimensional Cartesian space n n over A (and denoted A ) iff Ai = A for some set A for all i. We call ha1; : : : ; ani 2 A a vector. n-fold Cartesian product Let A := fAi j 1≤i≤ng be a collection of sets, then the n-fold Cartesian product A1 × ::: × An is fha1; : : : ; ani j ai 2 Ai for all 1≤i≤ng, we call ha1; : : : ; ani 2 A1 × ::: × An an n-tuple. -
The Checker Framework Manual: Custom Pluggable Types for Java
The Checker Framework Manual: Custom pluggable types for Java https://checkerframework.org/ Version 2.5.7 (4 Nov 2018) For the impatient: Section 1.3 (page 13) describes how to install and use pluggable type-checkers. Contents 1 Introduction 12 1.1 How to read this manual . 13 1.2 How it works: Pluggable types . 13 1.3 Installation . 13 1.4 Example use: detecting a null pointer bug . 13 2 Using a checker 15 2.1 Writing annotations . 15 2.2 Running a checker . 16 2.2.1 Using annotated libraries . 16 2.2.2 Distributing your annotated project . 17 2.2.3 Summary of command-line options . 17 2.2.4 Checker auto-discovery . 19 2.2.5 Shorthand for built-in checkers . 19 2.3 What the checker guarantees . 19 2.4 Tips about writing annotations . 20 2.4.1 Write annotations before you run a checker . 20 2.4.2 How to get started annotating legacy code . 20 2.4.3 Annotations indicate non-exceptional behavior . 22 2.4.4 Subclasses must respect superclass annotations . 22 2.4.5 Annotations on constructor invocations . 23 2.4.6 What to do if a checker issues a warning about your code . 24 3 Nullness Checker 26 3.1 What the Nullness Checker checks . 26 3.2 Nullness annotations . 27 3.2.1 Nullness qualifiers . 27 3.2.2 Nullness method annotations . 28 3.2.3 Initialization qualifiers . 28 3.2.4 Map key qualifiers . 28 3.3 Writing nullness annotations . 29 3.3.1 Implicit qualifiers . 29 3.3.2 Default annotation . -
Proceedings Chapter Reference
Proceedings Chapter Featherweight Swift: A Core Calculus for Swift's Type System RACORDON, Dimitri, BUCHS, Didier Abstract Swift is a modern general-purpose programming language, designed to be a replacement for C-based languages. Although primarily directed at development of applications for Apple’s operating systems, Swift’s adoption has been growing steadily in other domains, ranging from server-side services to machine learning. This success can be partly attributed to a rich type system that enables the design of safe, fast, and expressive programming interfaces. Unfortunately, this richness comes at the cost of complexity, setting a high entry barrier to exploit Swift’s full potential. Furthermore, existing documentation typically only relies on examples, leaving new users with little help to build a deeper under- standing of the underlying rules and mechanisms. This paper aims to tackle this issue by laying out the foundations for a formal framework to reason about Swift’s type system. We introduce Featherweight Swift, a minimal language stripped of all features not essential to describe its typing rules. Featherweight Swift features classes and protocol inheritance, supports retroactive modeling, and emulates Swift’s [...] Reference RACORDON, Dimitri, BUCHS, Didier. Featherweight Swift: A Core Calculus for Swift’s Type System. In: Proceedings of the 13th ACM SIGPLAN International Conference on Software Language En- gineering (SLE ’20). 2020. Available at: http://archive-ouverte.unige.ch/unige:144345 Disclaimer: layout of this document may differ from the published version. 1 / 1 Featherweight Swift: A Core Calculus for Swift’s Type System Dimitri Racordon Didier Buchs University of Geneva University of Geneva Department of Computer Science Department of Computer Science Switzerland Switzerland [email protected] [email protected] Abstract ACM Reference Format: Swift is a modern general-purpose programming language, Dimitri Racordon and Didier Buchs.