10 Ton Hydraulic Ram Pump Owner's Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design of a Hydraulic Ram Pumping System
© AUG 2019 | IRE Journals | Volume 3 Issue 2 | ISSN: 2456-8880 Design of a Hydraulic Ram Pumping System PHYOE MIN THAN1, CHO CHO KHAING2, ARKAR HTUN3 1 Department of Mechanical Engineering, Technological University (Hmawbi), Myanmar 2 Department of Mechanical Engineering, Technological University (Magway) 3 Department of Mechanical Engineering, Technological University (Magway) Abstract- The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The design head of 9 m and flow rate of 1.693 m3/s. The results from this study show that the less diameter of Fig.1. Hydraulic Ram Pump System pressure chamber and higher supply head will create higher pressure. A hydram is a structurally simple unit consisting of two moving parts. These are the impulse valve (or Indexed Terms- Hydraulic ram, Design, Pump, waste valve) and the delivery (check) valve. The unit Flow Rate, Head. also consists of an air chamber and an air valve. The operation of a hydram is intermittent due to the cyclic I. INTRODUCTION opening and cloning of the waste and delivery values. The closure of the waste valve creates a high pressure The hydraulic Ram pump or hydram is a complete rise in the drive pipe. -
10 Ton Hydraulic Cylinder Ram Owner's Manual
10 TON HYDRAULIC CYLINDER RAM GENERAL HYDRAULIC PORTABLE RAM KIT OWNER’S MANUAL WARNING: Read carefully and understand all ASSEMBLY AND OPERATION INSTRUCTIONS before operating. Failure to follow the safety rules and other basic safety precautions may result in serious personal injury. Item# 46276 Thank you very much for choosing a Strongway product! For future reference, please complete the owner’s record below: Model: _______________ Purchase Date: _______________ Save the receipt, warranty and these instructions. It is important that you read the entire manual to become familiar with this product before you begin using it. This machine is designed for certain applications only. The distributor cannot be responsible for issues arising from modification. We strongly recommend this machine not be modified and/or used for any application other than that for which it was designed. If you have any questions relative to a particular application, DO NOT use the machine until you have first contacted the distributor to determine if it can or should be performed on the product. For technical questions please call 1-800-222-5381. INTENDED USE Portable Power Kits are designed to be used for pushing, spreading, and pressing of vehicle body panels as well as various component parts and assemblies. TECHNICAL SPECIFICATIONS Description Item 46276 Capacity 10 Ton Rated (PSI) 8,939 Min. Lift Height 14-15/16 in Max Lift Height 20-13/16 in Cylinder Rod Stroke 5.9 in Dimensions L x W x H 14 15/16 x 3 5/8 x 2 ¼ Safe Operating Temperature is between 40°F – 105°F (4°C - 41°C) GENERAL SAFETY RULES WARNING: Read and understand all instructions. -
Experimental Study of Waste Valves and Delivery Valves Diameter Effect on the Efficiency of 3-Inch Hydraulic Ram Pumps
International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/IJFMS.2020.13.3.615 Vol. 13, No. 3, July-September 2020 ISSN (Online): 1882-9554 Original Paper Experimental Study of Waste Valves and Delivery Valves Diameter Effect on the Efficiency of 3-Inch Hydraulic Ram Pumps Muhamad Jafri1, Jefri S. Bale1 and Alionvember R. Thei1 1 Department of Mechanical Engineering, Faculty of Sciences and Engineering, Universitas Nusa Cendana Kupang 85001, Indonesia, [email protected], [email protected], [email protected] Abstract The purpose of this study was to analyze the effect of waste valve and the delivery valve diameter on the 3-inch hydraulic ram efficiency. The waste valve is one important component of the hydraulic ram. The results showed that the diameter of the waste and delivery valves greatly affect the efficiency of hydraulic ram. The highest D'Aubuisson efficiency was 67.66% with the waste valve diameter of contained 2.75 inches and the in the waste valve variation of 2.75 inches diameter and delivery valve diameter of 2.2 inches. The lowest efficiency was 36.14% with the waste valve diameter of 2.25 inches and the delivery valve diameter of 0.6 inches. Keywords: Hydraulic ram; waste valve diameter; delivery valve diameter; the efficiency of the pump. 1. Introduction Recently, as global-scale problems, such as global warming and desertification, have attracted attention, the importance of future environmental preservation has been emphasized worldwide, and various measures have been proposed and implemented. In the field of energy- and life-related technology, a variety of fluid machines play an important role in the infrastructure of society, and more energy-saving and resource-saving machinery will be needed [1]. -
INTRODUCTION Recognizing That the Hydraulic Ram Pump (Hydram)
HYDRAM PUMPS CHAPTER 1: INTRODUCTION Recognizing that the hydraulic ram pump (hydram) can be a viable and appropriate renewable energy water pumping technology in developing countries, our project team decided to design and manufacture more efficient and durable hydram so that it could solve major problems by providing adequate domestic water supply to scattered rural populations, as it was difficult to serve water to them by conventional piped water systems. Our project team organized a meeting with chief executive of “Godavari Sugar Mills Ltd” to implement our technology in Sameerwadi, Karnataka so that the people in that region would be benefited by our project. Godavari Sugar Mills Ltd sponsored our project and also made provision of all kind of facilities that would be required to fabricate our project from manufacturing point of view. It was in this context that a research project for development of an appropriate locally made hydraulic ram pump for Sameerwadi conditions was started The project funded by Godavari Sugar Mills Ltd had a noble objective of developing a locally made hydram using readily available materials, light weight, low cost and durable with operating characteristics comparable to commercially available types. Experimental tests and analytical modeling were expected to facilitate the development of generalized performance charts to enable user’s select appropriate sizes for their needs. The project was expected to end in March 2007. 1 By it completion, the project had achieved all its objectives as below. 1) Existing hydram installations were surveyed, inventoried and rehabilitated using spares provided under this project. 2) A design for a durable locally made hydraulic ram pump using readily available materials was developed. -
Hydraulic Hints & Trouble Shooting Guide
Vickers® General Product Support Hydraulic Hints & Trouble Shooting Guide Revised 8/96 694 General Hydraulic Hints . 3 Troubleshooting Guide & Maintenance Hints . 4 Chart 1 Excessive Noise . 5 Chart 2 Excessive Heat . 6 Chart 3 Incorrect Flow . 7 Chart 4 Incorrect Pressure . 8 Chart 5 Faulty Operation . 9 Quiet Hydraulics . 10 Contamination Control . 11 Hints on Maintenance of Hydraulic Fluid in the System. 13 Aeration . 14 Leakage Control . 15 Hydraulic Fluid and Temperature Recommendations for Industrial Machinery. 16 Hydraulic Fluid and Temperature Recommendations for Mobile Hydraulic Systems. 19 Oil Viscosity Recommendations . 20 Pump Test Procedure for Evaluation of Antiwear Fluids for Mobile Systems. 21 Oil Flow Velocity in Tubing . 23 Pipe Sizes and Pressure Ratings . 24 Preparation of Pipes, Tubes and Fittings Before Installation in a Hydraulic System. 25 ISO/ANSI Basic Symbols for Fluid Power Equipment and Systems. 26 Conversion Factors . 29 Hydraulic Formulas . 29 2 General Hydraulic Hints Good Assembly Pipes Tubing Do’s And Don’ts Practices Iron and steel pipes were the first kinds Don’t take heavy cuts on thin wall tubing of plumbing used to conduct fluid with a tubing cutter. Use light cuts to Most important – cleanliness. between system components. At prevent deformation of the tube end. If All openings in the reservoir should be present, pipe is the least expensive way the tube end is out or round, a greater to go when assembling a system. possibility of a poor connection exists. sealed after cleaning. Seamless steel pipe is recommended No grinding or welding operations for use in hydraulic systems with the Ream tubing only for removal of burrs. -
Hydraulics Lab Manual
HYDRAULICS LAB MANUAL Shiblu Sarker MARCH 19, 2021 ABSTRACT Hydraulics provides a foundation for students who specialize in the field of Water Resources Engineering. This lab manual will deal with application of basic principles of fluids at rest and in motion for analysis and design of hydraulic systems and will provide an advanced understanding of fluid mechanics, open channel flow, pipe flow, water pumps, and some engineering applications of these concepts. This lab manual is the basic laboratory procedure of fluid movement in pipes and open channel. This Lab will implement an active learning laboratory environment to assess students’ understanding and while covering experiments of pipe and open channel flow. Practical engineering problems and design applications will be emphasized. 1 Table of Contents ABSTRACT ........................................................................................................................................... 1 Chapter 1: Specific Energy and Critical Depth .................................................................................... 6 Purpose ............................................................................................................................................... 6 Equipment ........................................................................................................................................... 6 General ............................................................................................................................................... -
Design and Fabrication of Hydraulic Ram with Methods Of
DESIGN AND FABRICATION OF HYDRAULIC RAM WITH METHODS OF IMPROVING EFFICIENCY Poonam Diwan1, Aman Patel2, Lavish Sahu3 1,3Assistant Professor, 2M.tech Student Email: [email protected], [email protected], [email protected] Abstract would have been delivered in short pulses Pumps are among the oldest of the machines. under high pressure into the air chamber The use of this device was suspended in the which would act as a buffer, smoothing out middle-ages and revived in the 16th century the supply of water heading into the delivery when a German translation of the Greek pipe and on its way to the intended work describing the pump was published. destination. The addition later of the snifter The earliest pump to be used was the hand valve allowed a small amount of air to enter pump. More advanced pumps were, however, into the air chamber keeping the system known to the Romans, as shown by the double operational for much longer periods of time cylinder force pump now preserved in the between normal inspections and servicing. British museum, but their use was apparently Some of these designs ended up being quite lost in this century at the end of the Roman large with drive pipes exceeding 8 inches in Empire. In the original Montgolfier design diameter. (diagram shown below), a water supply or Keywords: Compressors, Hydraulic, Pumps delivery pipe feeds into a larger bored pipe that is turned up at the end and also necked I. INTRODUCTION down creating both a pinch point and a The hydraulic Ram pump or hydram is a venturi effect causing the water to increase in complete automatic device that uses the energy speed and pressure at the exit. -
Basic Hydraulics and Components
Pub.ES-100-2 BASIC HYDRAULICSANDCOMPONENTS BASIC HYDRAULICS AND COMPONENTS OIL HYDRAULIC EQUIPMENT ■ Overseas Business Department Hamamatsucho Seiwa Bldg., 4-8, Shiba-Daimon 1-Chome, Minato-ku, Tokyo 105-0012 JAPAN TEL. +81-3-3432-2110 FAX. +81-3-3436-2344 Preface This book provides an introduction to hydraulics for those unfamiliar with hydraulic systems and components, such as new users, novice salespeople, and fresh recruits of hydraulics suppliers. To assist those people to learn hydraulics, this book offers the explanations in a simple way with illustrations, focusing on actual hydraulic applications. The first edition of the book was issued in 1986, and the last edition (Pub. JS-100-1A) was revised in 1995. In the ten years that have passed since then, this book has become partly out-of-date. As hydraulic technologies have advanced in recent years, SI units have become standard in the industrial world, and electro-hydraulic control systems and mechatronics equipment are commercially available. Considering these current circumstances, this book has been wholly revised to include SI units, modify descriptions, and change examples of hydraulic equipment. Conventional hydraulic devices are, however, still used in many hydraulic drive applications and are valuable in providing basic knowledge of hydraulics. Therefore, this edition follows the preceding edition in its general outline and key text. This book principally refers hydraulic products of Yuken Kogyo Co., Ltd. as example, but does mention some products of other companies, with their consent, for reference to equipment that should be understood. We acknowledge courtesy from those companies who have given us support for this textbook. -
Lukanga-CEDAT-Bachelors.Pdf (3.553
MAKERERE UNIVERSITY COLLEGE OF ENGINEERING, DESIGN, ART AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING PROJECT: DESIGN AND CONSTRUCTION OF A RAM PUMP LUKANGA GERALD 15/U/556 215000534 A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT FOR THE AWARD OF THE BACHELOR’S DEGREE OF SCIENCE IN MECHANICAL ENGINEERING. ABSTRACT Water collection from sources especially in Uganda due to its hilly topography generally, is quite hard and a complex activity to undertake, because of the expensive existing alternatives used such as fuel pumps, solar pumps and in addition to that, fuel pumps have an adverse effect to the environment in terms of air pollution and noise which they do emit during their operation. Therefore, this project study was aimed at finding an alternative solution to water pumping or collection method especially from flowing streams or rivers using an energy free hydraulic ram pump, a pump which uses the hydraulic pressure of water to pump part of the water from the low lying areas to highly elevated altitudes thus eliminating the use of external conventional energy sources to pump water and above all it requires minimal maintenance after installation because of the simplicity of the materials used in its construction. To ensure the proper establishment of a successful and operational design project, different research methods, designs and experiments were carried out. The design was done with solid works software and the experiments were carried out after the prototype was constructed. The experiments were carried out by varying the source head of the pump while monitoring the delivery flow rate, the waste flow rate and the delivery pressures. -
Kinetic and Friction Head Loss Impacts on Horizontal
KINETIC AND FRICTION HEAD LOSS IMPACTS ON HORIZONTAL WATER SUPPLY AND AQUIFER STORAGE AND RECOVERY WELLS A Thesis by BENJAMIN JOSEPH BLUMENTHAL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Hongbin Zhan Committee Members, Peter Knappett Sungyon Lee Head of Department, John R. Giardino December 2014 Major Subject: Geology Copyright 2014 Benjamin Joseph Blumenthal ABSTRACT Groundwater wells can have extreme pressure buildup when injecting and extreme pressure drawdown when extracting. Greater wellbore contact with the aquifer minimizes pressure buildup and pressure drawdown. Aquifers are usually much more laterally extensive than vertically thick. Therefore, horizontal wells can be longer than vertical wells thus increasing aquifer contact and minimizing pressure issues. The length and therefore the effectiveness of horizontal wells are limited by two factors, either well construction or intra-wellbore head loss. Currently no analytical groundwater model rigorously accounts for intra- wellbore kinetic and friction head loss. We have developed a semi-analytical, intra- wellbore head loss model dynamically linked to an aquifer. This model is the first of its kind in the groundwater literature. We also derived several new boundary condition solutions that are rapidly convergent at all times. These new aquifer solutions do not require approximation or pressure pulse tracking. We verified our intra-wellbore head loss model against MODFLOW-CFP and found matches of three significant figures. We then completed 360 simulations to investigate intra-wellbore head loss. We found that only when aquifer drawdown was small will intra-wellbore head loss be relatively important. -
Liquid Pumps
LP500D HII AIRAIR DRIVENDRIVEN LIQUID PUMPS Hydraulics International, Inc. CONTENTS ■ ■ How the Pump Works, Advantages of the HII Pumps, Performance Curves ............................................................8, 9, 10, 11 How to Select Air Driven Pumps .........................................................2 ■ Compressibility of Water ...................................................................11 ■ Typical Applications .............................................................................3 ■ Standard Modifications .....................................................................12 ■ Model Selection Table ..........................................................................4 ■ HII Power Units .................................................................................13 ■ Type of Materials in Contact with Fluid, Liquid Compatibility ■ Other HII Quality Products .................................................................14 and Operating Temperature Limits .....................................................5 ■ Hydraulics International, Inc. - Overview .........................................15 ■ Dimensional Data, Port Details .......................................................6, 7 HOW THE PUMP WORKS Hydraulics International, Inc. (HII) air driven liquid pumps operate when compressed air is first applied to the drive. It will start on the principle of differential working areas. An air piston drives cycling at its maximum speed thus producing maximum fluid a smaller diameter plunger or piston -
MASTER VHY/HVZ Instruction Book 679025-GB-2003/12
MASTER VHY/HVZ Instruction book 679025-GB-2003/12 We congratulate you for choosing a HARDI plant protection product. The reliability and efficiency of this product depend upon your care. The first step is to carefully read and pay attention to this instruction book. It contains essential information for the efficient use and long life of this quality product. As this instruction book covers all MASTER models with VHY or VHZ boom, and all models with either BK or EVC operating unit, please pay attention to the paragraphs dealing with precisely your model. This book is to be read in conjunction with the “Spray Technique” book. Illustrations, technical information and data in this book are to the best of our belief correct at the time of printing. As it is HARDI INTERNATIONAL A/S policy permanently to improve our products, we reserve the right to make changes in design, features, accessories, specifications and maintenance instructions at any time and without notice. HARDI INTERNATIONAL A/S is without any obligation in relation to implements purchased before or after such changes. HARDI INTERNATIONAL A/S cannot undertake any responsibility for possible omissions or inaccuracies in this publication, although everything possible has been done to make it complete and correct. As this instruction book covers more models and features or equipment, which are available in certain countries only, please pay attention to paragraphs dealing with precisely your model. Published and printed by HARDI INTERNATIONAL A/S GB 01 00 MA 1 2 Table of Contents CE Declaration ............................................................ 4 Important safety notes ................................................. 5 Description .................................................................