Energy Storage Techniques for Hydraulic Wind Power Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydraulic Motors Catalog
HYDRAULIC MOTORS CATALOG DESIGN MANUFACTURE INTEGRATE 1 877 382-2850 EAGLE-HYDRAULIC.COM 1 OEM HYDRAULIC CYLINDERS 2 STANDARD HYDRAULIC CYLINDERS HYDRAULIC POWER UNITS -AC 3 -DC HYDRAULIC COMPONENTS -Pumps 4 -Motors 5 SYSTEM INTEGRATION 6 NEW: NOVAPEAK TABLE OF CONTENTS EBMM 4 EBMP/ EBMPH/ EBMPW/ EOZ 12 EBMR/ EBMRS/ EBMRWN/ EBMR-BK01/ EOK 39 EBMH 65 EBMSY 75 EBMT/ EBMTE/ EBMTJ/ EBMTS 99 EBMV 123 EBMK2 134 EBMK6 152 EBME2 167 EBMJ 182 EBMER-2/ EBMER-3/ EBMER-4 187 EGM02 GEARMOTOR HIGH SPEED 214 SPEED SENSOR 216 VALVES (CROSSOVER RELIEF/ SWITCH/ OVERCENTER/ COUNTERBALANCE) 217 HYDRAULIC BRAKES EBK10 / EBK2 226 LIMITED WARRANTY 238 HYDRAULIC PRODUCT SAFETY 240 FLUID POWER FORMULAS 241 COMPARISON TABLE 244 EBMM SERIES EBMM series motor is a small volume, economical type, which is designed with shaft distribution flow, which adapts the Gerotor gear set design and provides a compact volume, high power and low weight. FEATURES • Advanced manufacturing devices for the Gerotor gear set, which provide small volume, high efficiency and long life. • Shaft seal can bear high pressure and can be used in parallel or in series. • Advanced construction design, high power and low weight. • Speed sensor available on request. • Internal construction: no bearing, no bushing EBMM - Flange F - Rear Port Max. Inlet Pressure Continuous PSI (bar) 2538 (175) EBMM8-50 Intermittent PSI (bar) 3263 (225) EBMM EBMM EBMM EBMM EBMM EBMM 8 12.5 20 32 40 50 Geometric displacement in3/rev (cm3/rev.) 0.5 (8.2) 0.79 (12.9) 1.21 (19.9) 1.93 (31.6) 2.43 (39.8) 3.07 (50.3) EBMM Continuous (rpm) 1950 1550 1000 630 500 400 Max. -
DEPARTMENT of ENGINEERING Course CE 41800 – Hydraulics
DEPARTMENT OF ENGINEERING Course CE 41800 – Hydraulics Engineering Type of Course Required for Civil Engineering Program Catalog Description Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban planning and storm drainage practice. Credits 3 Contact Hours 3 Prerequisite Courses CE 31800 Corequisite Courses None Prerequisites by Fluid Mechanics Topics Textbook Larry Mays, Water Resources Engineering, John Wiley Publishing Company, Current Edition. Course Objectives Students will understand and be able to apply fundamental concepts and techniques of hydraulics and hydrology in the analysis, design, and operation of water resources systems. Course Outcomes Students who successfully complete this course will be able to: 1. Become familiar with different water resources terminology like hydrology, ground water, hydraulics of pipelines and open channel. [a] 2. Understand and be able to use the energy and momentum equations. [a] 3. Analyze flow in closed pipes, and design and selection of pipes including sizes. [a, c, e] 4. Understand pumps classification and be able to develop a system curve used in pump selection. [a, c, e] 5. Design and select pumps (single or multiple) for different hydraulic applications. [a, c, e] Department Syllabus CE – 41800 Page | 1 6. Become familiar with open channel cross sections, hydrostatic pressure distribution and Manning’s law. [a] 7. Determine water surface profiles for gradually varied flow in open channels. [a, e] 8. Familiar with drainage systems and wastewater sources and flow rates. -
Intelligent Hydraulics in New Dimensions. Industrial Hydraulics from Rexroth You Have Our Full Support
Intelligent Hydraulics in New Dimensions. Industrial Hydraulics from Rexroth You Have Our Full Support. Our Dedication is to Your Success With its extensive product range and outstanding application expertise, Rexroth is the technological and market leader in industrial hydraulics. You benefit from the world’s broadest range of standard products, application-adapted products, and special cus- tomized solutions for industrial hydraulics. Teams operating worldwide engineer and deliver complete turnkey systems. Rexroth is the ideal partner for the development of highly efficient plant and machinery—from the initial contact through to commissioning and for the application’s entire life cycle. Extra quality is ensured by Rexroth’s internal quality standards that go beyond the ISO standards and extends our performance specifications consistently to the upper limits. It is precisely in international large-scale projects and research projects that the company’s financial strength forms a firm foun- dation. All over the world, Rexroth can provide you with skilled advice, support, and exceptional service—with its own distribution and service companies in 80 countries. Hydraulics 3 If You Expect Quality, You’re in Good Hands With Rexroth As the world’s leading supplier of industrial hydraulics, Rexroth occupies a prominent position with its parts, systems and specially adapted electronic components. With Rexroth, builders of machines and plant have access to products that consistently set new standards of perfor- mance and quality. Rexroth’s Industrial Hydraulics division located in Bethlehem, Pennsylvania designs and manufactures high-performance, high-productivity hydraulic power units, systems and com- ponents using world-class technologies. Rexroth supports applications in the machine tool and plastics processing machinery, metal forming, civil engineering, power genera- tion, test machinery and simulation, entertainment, presses, automotive, transportation, marine and offshore technology, and wood processing markets. -
Design of Hydraulic Structures 89, Albertson & Kia (Eds) © 1989 Balkema, Rotterdam
P AP-SEi5 PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON DESIGN OF HYDRAULIC STRUCTURES / FORT COLLINS, COLORADO / 26-29 JUNE 1989 Design of Hydraulic ructures 89 HYDRAULICS BRANCH St OFFICIAL FILE COPY Edited by MAURICE L.ALBERTSON Department of Civil Engineering, Colorado State University, Fort Collins, USA T RAHIM A.KIA Mahab G. Consulting Eng., Tehran, Iran resently: Department of Civil Engineering, Colorado State University, ort Collins, USA OFFPRINT (3— Bureau of Reclamation HYDRAULICS BRANCH RI WHEN BORROWED RETURN PROMPTLY A.A.BALKEMA / ROTTERDAM / BROOKFIELD / 1989 Design of Hydraulic Structures 89, Albertson & Kia (eds) © 1989 Balkema, Rotterdam. ISBN 90 6191 898 7 The role of hydraulic modeling in development of innovative spillway concepts Philip H.Burgi Bureau of Reclamation, Denver, Colo., USA ABSTRACT: The use of hydraulic models to develop and verify the intricate design of waterways to pass flood flows has been closely associated with the development of hydraulic structures over the past 50 years. Since the mid-30's, the Bureau of Reclamation has used laboratory models to develop spillways for large dams such as Hoover, Grand Coulee, Glen Canyon, Yellowtail, and Morrow Point Dams. Documented reports and generalized design criteria have been developed to summarize the results of these investigations. In recent years, Reclamation has developed various innovative spillway concepts which have resulted in cost effective designs for hydraulic structures. This paper will summarize recent laboratory investigations for labyrinth, stepped, and fuse plug spillway concepts as well as retrofit concepts using aerators on spillways and downstream slope protection systems for overtopping low-head embankments. INTRODUCTION Physical model studies are used to investigate the anticipated performance of hydraulic structures. -
Hydraulic Hints & Trouble Shooting Guide
Vickers® General Product Support Hydraulic Hints & Trouble Shooting Guide Revised 8/96 694 General Hydraulic Hints . 3 Troubleshooting Guide & Maintenance Hints . 4 Chart 1 Excessive Noise . 5 Chart 2 Excessive Heat . 6 Chart 3 Incorrect Flow . 7 Chart 4 Incorrect Pressure . 8 Chart 5 Faulty Operation . 9 Quiet Hydraulics . 10 Contamination Control . 11 Hints on Maintenance of Hydraulic Fluid in the System. 13 Aeration . 14 Leakage Control . 15 Hydraulic Fluid and Temperature Recommendations for Industrial Machinery. 16 Hydraulic Fluid and Temperature Recommendations for Mobile Hydraulic Systems. 19 Oil Viscosity Recommendations . 20 Pump Test Procedure for Evaluation of Antiwear Fluids for Mobile Systems. 21 Oil Flow Velocity in Tubing . 23 Pipe Sizes and Pressure Ratings . 24 Preparation of Pipes, Tubes and Fittings Before Installation in a Hydraulic System. 25 ISO/ANSI Basic Symbols for Fluid Power Equipment and Systems. 26 Conversion Factors . 29 Hydraulic Formulas . 29 2 General Hydraulic Hints Good Assembly Pipes Tubing Do’s And Don’ts Practices Iron and steel pipes were the first kinds Don’t take heavy cuts on thin wall tubing of plumbing used to conduct fluid with a tubing cutter. Use light cuts to Most important – cleanliness. between system components. At prevent deformation of the tube end. If All openings in the reservoir should be present, pipe is the least expensive way the tube end is out or round, a greater to go when assembling a system. possibility of a poor connection exists. sealed after cleaning. Seamless steel pipe is recommended No grinding or welding operations for use in hydraulic systems with the Ream tubing only for removal of burrs. -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
A Review of Biological Fluid Power Systems and Their Potential Bionic Applications
The University of Manchester Research A review of biological fluid power systems and their potential bionic applications DOI: 10.1007/s42235-019-0031-6 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Liu, C., Wang, Y., Ren, L., & Ren, L. (2019). A review of biological fluid power systems and their potential bionic applications. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-019-0031-6 Published in: Journal of Bionic Engineering Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 A review of biological fluid power systems and their potential bionic applications Chunbao Liu1,2, Yingjie Wang 1,2, Luquan Ren 2, Lei Ren2,3 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China 2 Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 3 School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Abstract Nature has always inspired human achievements in industry, and biomimetics is increasingly being applied in fluid power technology. -
What Is Hydraulic and Pneumatic System
Module-01 : INTRODUCTION TO HYDRAULIC AND PNEUMATIC SYSTEMS Lecture-01 : What is Hydraulic and Pneumatic System: Fluid power systems use fluids to transmit power and motion. Both liquids and gases are called fluids. Hence both these types of fluids are used in fluid power technology. Under liquids mostly mineral oil with suitable additives are used instead of plain water - (which, however, is used also in some cases) and under gases usually atmospheric air is used after cleaning it suitably. However, synthetic fluids with additives and other gasses are also used for specific purposes, such as fire resistance or the fluid itself is the product- milk as an example. That is the state of art behind these two modern technologies of industrial oil-hydraulics and pneumatics. Fluid power technology actually has a long history behind it. From early days of civilization mankind could feel the existence of power in the water currents of rivers and streams, in ocean waves and in the flowing breeze and in the turbulent storms. Early men could even harness some of these natural sources of energy. Wind energy, for example, was utilized in sailing boats and water current to drive water wheels. Hydroelectric power generation still uses the same idea, of course now-a- days in a much more efficient way. Fluid power technology in its earliest forms mostly took advantage of the motion of fluids or scientifically speaking of its kinetic energy. But the present day oil hydraulics mostly depends on the pressure-energy of the fluids rather than its velocity and in some cases it is even called as hydrostatic transmission of power. -
Introduction to Hydraulic Actuators
Introduction to hydraulic actuators By - Kamalesh 16-11-2012 History and definition Inventor Joseph Bramah of England invented Hydraulic press and was issued a patent on this press in 1795. Pressurized hydraulic fluid used to transfer energy from flow and pressure to drive hydraulic machinery. 01 Principle of hydraulic system Pascal's law is the basis of hydraulic drive systems. 02 Basic hydraulic system Hydraulic jack 03 Hydraulic actuators 1. Hydraulic motors 2. Hydraulic cylinders 04 Hydraulic motors A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). 05 Hydraulic cylinders A Hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. Single acting vs. double acting 1. Single acting cylinders are economical and the simplest design. Hydraulic fluid enters through a port at one end of the cylinder, which extend the rod by means of area difference. An external force returns or gravity returns the piston rod. 2. Double acting cylinders have a port at each end, supplied with hydraulic fluid for both the retraction and extension. 06 Components of a hydraulic cylinder 1. Cylinder barrel 2. Cylinder base or cap 3. Cylinder head 4. Piston 5. Piston rod 6. Seal gland 7. Seals (nitrile rubber, Polyurethane or Fluorocarbon Viton) 07 Cylinder designs Telescopic cylinder These are multistage cylinders which can fit in the smaller dimensions of machine. Plunger cylinder An hydraulic cylinder without a piston or with a piston without seals is called a plunger cylinder. -
Basic Hydraulics and Components
Pub.ES-100-2 BASIC HYDRAULICSANDCOMPONENTS BASIC HYDRAULICS AND COMPONENTS OIL HYDRAULIC EQUIPMENT ■ Overseas Business Department Hamamatsucho Seiwa Bldg., 4-8, Shiba-Daimon 1-Chome, Minato-ku, Tokyo 105-0012 JAPAN TEL. +81-3-3432-2110 FAX. +81-3-3436-2344 Preface This book provides an introduction to hydraulics for those unfamiliar with hydraulic systems and components, such as new users, novice salespeople, and fresh recruits of hydraulics suppliers. To assist those people to learn hydraulics, this book offers the explanations in a simple way with illustrations, focusing on actual hydraulic applications. The first edition of the book was issued in 1986, and the last edition (Pub. JS-100-1A) was revised in 1995. In the ten years that have passed since then, this book has become partly out-of-date. As hydraulic technologies have advanced in recent years, SI units have become standard in the industrial world, and electro-hydraulic control systems and mechatronics equipment are commercially available. Considering these current circumstances, this book has been wholly revised to include SI units, modify descriptions, and change examples of hydraulic equipment. Conventional hydraulic devices are, however, still used in many hydraulic drive applications and are valuable in providing basic knowledge of hydraulics. Therefore, this edition follows the preceding edition in its general outline and key text. This book principally refers hydraulic products of Yuken Kogyo Co., Ltd. as example, but does mention some products of other companies, with their consent, for reference to equipment that should be understood. We acknowledge courtesy from those companies who have given us support for this textbook. -
16-1 Attachment 3 Glossary of Terminology for Hydraulics & Scour
Memo to Designers 16-1A • December 2017 LRFD SupersedesSupersedes MemoMemo toto DesignersDesigners 1-231-23 DatedDated OctoberOctober 20032003 Attachment 3 Glossary Of Terminology For Hydraulics & Scour Definitions (refer to AASHTO LRFD-BDS-CA Section 2.2) Common terminology has been defined below for easy reference. Abutment Scour Abutment scour is essentially a form of scour at a short contraction. Accordingly, scour is closely influenced by flow distribution through the short contraction and by turbulence generated and dispersed in the form of eddies and vortices, by flow entering the short contraction. Aggradation General and progressive buildup (long term) of the longitudinal profile of a channel bed due to sediment deposition. Backwater The increase in water surface elevation relative to its elevation occurring under natural channel and floodplain conditions. It is induced by a bridge or other structure that obstructs or constricts the free flow of water that occurs in a channel. Bank Protection: Engineering works for the purpose of protecting streambanks from erosion. Base Flood Discharge associated with the 100-year flood recurrence interval. Base floodplain Floodplain associated with the flood with a 100-year occurrence interval. Bedrock The solid rock exposed at the surface of the earth or overlain by soils and unconsolidated material. Bridge Waterway The cross-sectional area of a bridge opening available for flow, as measured below a specified stage and normal to the principal direction of flow. Bulking Increasing the water discharge to account for high concentrations of sediment in the flow. Channel Profile A plot of the stream channel elevations relative to distance separating them along the length of the channel that generally can be assumed as a channel gradient. -
Hydraulics Heroes
Hydraulics Heroes An introduction to five influential scientists, mathematicians and engineers who paved the way for modern hydraulics: our hydraulics heroes. www.hydraulicsonline.com Hydraulics Online e-book series: Sharing our knowledge of all things hydraulic About Hydraulics Online Hydraulics Online is a leading, award-winning, ISO 9001 accredited provider of customer-centric fluid power solutions to 130 countries and 24 sectors worldwide. Highly committed employees and happy customers are the bedrock of our business. Our success is built on quality and technical know-how and the fact that we are 100% independent – we provide truly unbiased advice and the most optimal solutions for our customers. Every time. RITISH B T E R G U S A T T I Q R E U H A L Y I T Hydraulics Heroes We invite you to meet five of our hydraulics heroes: Hydraulics Online e-book series: Benedetto Castelli (c.1577 – 1642) Sharing our knowledge of all things hydraulic Blaise Pascal (1623 – 1662) Joseph Bramah (1748 – 1814) Jean Léonard Marie Poiseuille (1799 – 1869) William Armstrong (1810 – 1900) Hydraulics Online e-book: Hydraulics Heroes P. 3 www.hydraulicsonline.com Benedetto Castelli Benedetto Castelli (c.1577 – 1642) is celebrated for his work in astronomy and hydraulics. His most celebrated work is Della Misura delle Acque Correnti – On the Measurement of Running Water – which was published in 1629. In this work, Castelli established the continuity principle, which is still central to all modern hydraulics. A supporter and colleague of Galileo, Benedetto was born the eldest of seven children of a wealthy landowner. It is not known exactly when he was born, but it is thought to be 1577 or 1578.