Mel Hochster's Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Mel Hochster's Lecture Notes MATH 614 LECTURE NOTES, FALL, 2017 by Mel Hochster Lecture of September 6 We assume familiarity with the notions of ring, ideal, module, and with the polynomial ring in one or finitely many variables over a commutative ring, as well as with homomor- phisms of rings and homomorphisms of R-modules over the ring R. As a matter of notation, N ⊆ Z ⊆ Q ⊆ R ⊆ C are the non-negative integers, the integers, the rational numbers, the real numbers, and the complex numbers, respectively, throughout this course. Unless otherwise specified, all rings are commutative, associative, and have a multiplica- tive identity 1 (when precision is needed we write 1R for the identity in the ring R). It is possible that 1 = 0, in which case the ring is f0g, since for every r 2 R, r = r ·1 = r ·0 = 0. We shall assume that a homomorphism h of rings R ! S preserves the identity, i.e., that h(1R) = 1S. We shall also assume that all given modules M over a ring R are unital, i.e., that 1R · m = m for all m 2 M. When R and S are rings we write S = R[θ1; : : : ; θn] to mean that S is generated as a ring over its subring R by the elements θ1; : : : ; θn. This means that S contains R and the elements θ1; : : : ; θn, and that no strictly smaller subring of S contains R and the θ1; : : : ; θn. It also means that every element of S can be written (not necessarily k1 kn uniquely) as an R-linear combination of the monomials θ1 ··· θn . When one writes S = R[x1; : : : ; xk] it often means that the xi are indeterminates, so that S is the polynomial ring in k variables over R. But one should say this. The main emphasis in this course will be on Noetherian rings, i.e., rings in which every ideal is finitely generated. Specifically, for all ideals I ⊆ R, there exist f1; : : : ; fk 2 R Pk such that I = (f1; : : : ; fk) = (f1; : : : ; fk)R = i=1 Rfi. We shall develop a very useful theory of dimension in such rings. This will be discussed further quite soon. We shall not be focused on esoteric examples of rings. In fact, almost all of the theory we develop is of great interest and usefulness in studying the properties of polynomial rings over a field or the integers, and homomorphic images of such rings. There is a strong connection between studying systems of equations, studying their solutions sets, which often have some kind of geometry associated with them, and studying commutative rings. Suppose the equations involve variables X1;:::;Xn with coefficients in K. The most important case for us will be when K is an algebraically closed field such as the complex numbers C. Suppose the equations have the form Fi = 0 where the Fi are polynomials in the Xj with coefficients in K. Let I be the ideal generated by the Fi in the polynomial ring K[X1;:::;Xn] and let R be the quotient ring K[X1;:::;Xn]=I. In R, the images xj of the variables Xj give a solution of the equations, a sort of \universal" 1 2 solution. The connection between commutative algebra and algebraic geometry is that algebraic properties of the ring R are reflected in geometric properties of the solution set, and conversely. Solutions of the equations in the field K give maximal ideals of R. This leads to the idea that maximal ideals of R should be thought of as points in a geometric object. Some rings have very few maximal ideals: in that case it is better to consider all of the prime ideals of R as points of a geometric object. We shall soon make this idea more formal. Before we begin the systematic development of our subject, we shall look at some very simple examples of problems, many unsolved, that are quite natural and easy to state. Suppose that we are given polynomials f and g in C[x], the polynomial ring in one variable over the complex numbers C. Is there an algorithm that enables us to tell whether f and g generate C[x] over C? This will be the case if and only if x 2 C[f; g], i.e., if and only if x can be expressed as a polynomial with complex coefficients in f and g. For example, suppose that f = x5 + x3 − x2 + 1 and g = x14 − x7 + x2 + 5. Here it is easy to see that f and g do not generate, because neither has a term involving x with nonzero coefficient. But if we change f to x5 + x3 − x2 + x + 1 the problem does not seem easy. The following theorem of Abhyankar and Moh, whose original proof was about 150 pages long, gives a method of attacking this sort of problem. Theorem (Abhyankar-Moh). Let f, g in C[x] have degrees d and e respectively. If C[f; g] = C[x], then either d j e or e j d, i.e., one of the two degrees must divide the other. Shorter proofs have since been given. Given this difficult result, it is clear that the specific f and g given above cannot generate C[x]: 5 does not divide 14. Now suppose instead that f = x5 + x3 − x2 + x + 1 and g = x15 − x7 + x2 + 5. With this choice, the Abhyankar-Moh result does not preclude the possibility that f and g generate C[x]. To pursue the issue further, note that in g − f 3 the degree 15 terms cancel, producing a polynomial of smaller degree. But when we consider f and g−f 3, which generate the same ring as f and g, the larger degree has decreased while the smaller has stayed the same. Thus, the sum of the degrees has decreased. In this sense, we have a smaller problem. We can now see whether the Abhyankar-Moh criterion is satisfied for this smaller pair. If it is, and the smaller degree divides the larger, we can subtract off a multiple of a power of the smaller degree polynomial and get a new pair in which the larger degree has decreased and the smaller has stayed the same. Eventually, either the criterion fails, or we get a constant and a single polynomial of degree ≥ 2, or one of the polynomials has degree 1. In the first two cases the original pair of polynomials does not generate. In the last case, they do generate. This is a perfectly general algorithm. To test whether f of degree d and g of degree n ≥ d are generators, check whether d divides n. If so and n = dk, one can choose a constant c such that g − cf k has degree smaller than n. If the leading coefficients of f and g are a 6= 0 and b 6= 0, take c = b=ak. The sum of the degrees for the pair f; g − cf k has decreased. Continue in the same way with the new pair, f, g −cf k. If one eventually reaches a pair in which one of the polynomials is linear, the original pair were generators. Otherwise, one reaches either a pair in which neither degree divides the other, or else a pair in which one 3 polynomial has degree ≥ 2 while the other is constant. In either of these cases, the two polynomials do not generate. The constant does not help, since we have all of C available anyway, and a polynomial g of degree d ≥ 2 cannot generate: when g is substituted into a polynomial of degree n, call it F , F (g) has a term of degree dn coming from gn, and no other term occurring can cancel it. Thus, one cannot have x = F (g). One can work backwards from a pair in which one of the polynomials is linear to get all pairs of generators. For example, one gets pairs of generators x; 0 ! x; 1 ! x + 5; 1 ! x + 5; (x + 5)7 + 1 ! 11 (x + 5)7 + 1 + x + 5; (x + 5)7 + 1. If one expands the last pair out, it is not very obvious from looking at the polynomials that they generate. Of course, applying the algorithm described above would enable one to see it. This gives a reasonably appealing method for telling whether two polynomials in one variable generate C[x]. The step of going from the problem of when two polynomials generate to C[x] over C to when three polynomials generate turns out to be a giant one, however! While algorithms are known based on the theory of Gr¨obnerbases, the process is much more complex. There are some elegant conjectures, but there is a lack of elegant theorems in higher dimension. One might hope that given three polynomials that generate C[x], say f, g, and h, with degrees d; e; n, respectively, that it might be true that one of the degrees has to be a sum of non-negative integer multiples of the other two, e.g., n = rd+se. Then one could reduce to a smaller problem (i.e., one where the sum of the degrees is smaller) by subtracting a constant times f rgs from h, while keeping the same f and g. But it is not true in the case of three polynomials that one of the degrees must be a sum of non-negative integer multiples of the other two. (See whether f = x5; g = x4 + x; and h = x3 generate C[x].) The problem of giving an elegant test for deciding when m polynomials generate the polynomial ring C[x1; : : : ; xn] in n variables over C seems formidable, but when m = n there is at least a tantalizing conjecture.
Recommended publications
  • The Completion of a Ring with a Valuation 21
    proceedings of the american mathematical society Volume 36, Number 1, November 1972 THE COMPLETION OF A RING WITH A VALUATION HELEN E. ADAMS Abstract. This paper proves three main results : the completion of a commutative ring with respect to a Manis valuation is an integral domain; a necessary and sufficient condition is given that the completion be a field; and the completion is a field when the valuation is Harrison and the value group is archimedean ordered. 1. Introduction. In [1] we defined a generalized pseudovaluation on a ring R and found explicitly the completion of R with respect to the topology induced on R by such a pseudovaluation. Using this inverse limit character- ization of the completion of R we show, in §2, that when the codomain of a valuation on R is totally ordered, the completion of R with respect to the valuation has no (nonzero) divisors of zero and the valuation on R can be extended to a valuation on the completion. In §3, R is assumed to have an identity and so, from [1, §2], the completion has an identity: a necessary and sufficient condition is given such that each element of the completion of R has a right inverse. §§2 and 3 are immediately applicable to a Manis valuation 9?on a com- mutative ring R with identity [3], where the valuation <pis surjective and the set (p(R) is a totally ordered group. A Harrison valuation on R is a Manis valuation 9?on R such that the set {x:x e R, <p(x)> y(l)} is a finite Harrison prime [2].
    [Show full text]
  • Chapter 4 the Algebra–Geometry Dictionary
    Chapter 4 The Algebra–Geometry Dictionary In this chapter, we will explore the correspondence between ideals and varieties. In §§1 and 2, we will prove the Nullstellensatz, a celebrated theorem which iden- tifies exactly which ideals correspond to varieties. This will allow us to construct a “dictionary” between geometry and algebra, whereby any statement about varieties can be translated into a statement about ideals (and conversely). We will pursue this theme in §§3 and 4, where we will define a number of natural algebraic operations on ideals and study their geometric analogues. In keeping with the computational emphasis of the book, we will develop algorithms to carry out the algebraic op- erations. In §§5 and 6, we will study the more important algebraic and geometric concepts arising out of the Hilbert Basis Theorem: notably the possibility of decom- posing a variety into a union of simpler varieties and the corresponding algebraic notion of writing an ideal as an intersection of simpler ideals. In §7, we will prove the Closure Theorem from Chapter 3 using the tools developed in this chapter. §1 Hilbert’s Nullstellensatz In Chapter 1, we saw that a varietyV k n can be studied by passing to the ideal ⊆ I(V)= f k[x 1,...,x n] f(a)= 0 for alla V { ∈ | ∈ } of all polynomials vanishing onV. Hence, we have a map affine varieties ideals V −→ I(V). Conversely, given an idealI k[x 1,...,x n], we can define the set ⊆ V(I)= a k n f(a)= 0 for allf I . { ∈ | ∈ } © Springer International Publishing Switzerland 2015 175 D.A.
    [Show full text]
  • Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
    Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R.
    [Show full text]
  • Notes on Irreducible Ideals
    BULL. AUSTRAL. MATH. SOC. I3AI5, I3H05, I 4H2O VOL. 31 (1985), 321-324. NOTES ON IRREDUCIBLE IDEALS DAVID J. SMITH Every ideal of a Noetherian ring may be represented as a finite intersection of primary ideals. Each primary ideal may be decomposed as an irredundant intersection of irreducible ideals. It is shown that in the case that Q is an Af-primary ideal of a local ring (if, M) satisfying the condition that Q : M = Q + M where s is the index of Q , then all irreducible components of Q have index s . (Q is "index- unmixed" .) This condition is shown to hold in the case that Q is a power of the maximal ideal of a regular local ring, and also in other cases as illustrated by examples. Introduction Let i? be a commutative ring with identity. An ideal J of R is irreducible if it is not a proper intersection of any two ideals of if . A discussion of some elementary properties of irreducible ideals is found in Zariski and Samuel [4] and Grobner [!]• If i? is Noetherian then every ideal of if has an irredundant representation as a finite intersection of irreducible ideals, and every irreducible ideal is primary. It is properties of representations of primary ideals as intersections of irreducible ideals which will be discussed here. We assume henceforth that if is Noetherian. Received 25 October 1981*. Copyright Clearance Centre, Inc. Serial-fee code: OOOl*-9727/85 $A2.00 + 0.00. 32 1 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 24 Sep 2021 at 06:01:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]
  • Lifting Defects for Nonstable K 0-Theory of Exchange Rings And
    LIFTING DEFECTS FOR NONSTABLE K0-THEORY OF EXCHANGE RINGS AND C*-ALGEBRAS FRIEDRICH WEHRUNG Abstract. The assignment (nonstable K0-theory), that to a ring R associates the monoid V(R) of Murray-von Neumann equivalence classes of idempotent infinite matrices with only finitely nonzero entries over R, extends naturally to a functor. We prove the following lifting properties of that functor: (i) There is no functor Γ, from simplicial monoids with order-unit with nor- malized positive homomorphisms to exchange rings, such that V ◦ Γ =∼ id. (ii) There is no functor Γ, from simplicial monoids with order-unit with normalized positive embeddings to C*-algebras of real rank 0 (resp., von Neumann regular rings), such that V ◦ Γ =∼ id. 3 (iii) There is a {0, 1} -indexed commutative diagram D~ of simplicial monoids that can be lifted, with respect to the functor V, by exchange rings and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus neither by regular rings nor by C*-algebras of real rank 0. By using categorical tools (larders, lifters, CLL) from a recent book from the author with P. Gillibert, we deduce that there exists a unital exchange ring of cardinality ℵ3 (resp., an ℵ3-separable unital C*-algebra of real rank 1) R, with stable rank 1 and index of nilpotence 2, such that V(R) is the positive cone of a dimension group but it is not isomorphic to V(B) for any ring B which is either a C*-algebra of real rank 0 or a regular ring.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • 2-Irreducible and Strongly 2-Irreducible Ideals of Commutative Rings
    2-IRREDUCIBLE AND STRONGLY 2-IRREDUCIBLE IDEALS OF COMMUTATIVE RINGS ∗ H. MOSTAFANASAB AND A. YOUSEFIAN DARANI Abstract. An ideal I of a commutative ring R is said to be irreducible if it cannot be written as the intersection of two larger ideals. A proper ideal I of a ring R is said to be strongly irreducible if for each ideals J, K of R, J ∩ K ⊆ I implies that J ⊆ I or K ⊆ I. In this paper, we introduce the concepts of 2-irreducible and strongly 2-irreducible ideals which are generalizations of irreducible and strongly irreducible ideals, respectively. We say that a proper ideal I of a ring R is 2-irreducible if for each ideals J, K and L of R, I = J ∩ K ∩ L implies that ei- ther I = J ∩ K or I = J ∩ L or I = K ∩ L. A proper ideal I of a ring R is called strongly 2-irreducible if for each ideals J, K and L of R, J ∩K ∩L ⊆ I implies that either J ∩K ⊆ I or J ∩L ⊆ I or K ∩L ⊆ I. Keywords: Irreducible ideals, 2-irreducible ideals, strongly 2-irreducible ideals. MSC(2010): Primary: 13A15, 13C05; Secondary: 13F05, 13G05. 1. Introduction Throughout this paper all rings are commutative with a nonzero identity. Recall that an ideal I of a commutative ring R is irreducible if I = J K for ideals J and K of R implies that either I = J or I = K. A proper∩ ideal I of a ring R is said to be strongly irreducible if for each ideals J, K of R, J K I implies that J I or K I (see [3], [8]).
    [Show full text]
  • Commutative Ideal Theory Without Finiteness Conditions: Completely Irreducible Ideals
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 7, Pages 3113–3131 S 0002-9947(06)03815-3 Article electronically published on March 1, 2006 COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: COMPLETELY IRREDUCIBLE IDEALS LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING Abstract. An ideal of a ring is completely irreducible if it is not the intersec- tion of any set of proper overideals. We investigate the structure of completely irrreducible ideals in a commutative ring without finiteness conditions. It is known that every ideal of a ring is an intersection of completely irreducible ideals. We characterize in several ways those ideals that admit a representation as an irredundant intersection of completely irreducible ideals, and we study the question of uniqueness of such representations. We characterize those com- mutative rings in which every ideal is an irredundant intersection of completely irreducible ideals. Introduction Let R denote throughout a commutative ring with 1. An ideal of R is called irreducible if it is not the intersection of two proper overideals; it is called completely irreducible if it is not the intersection of any set of proper overideals. Our goal in this paper is to examine the structure of completely irreducible ideals of a commutative ring on which there are imposed no finiteness conditions. Other recent papers that address the structure and ideal theory of rings without finiteness conditions include [3], [4], [8], [10], [14], [15], [16], [19], [25], [26]. AproperidealA of R is completely irreducible if and only if there is an element x ∈ R such that A is maximal with respect to not containing x.
    [Show full text]
  • Using Tropical Differential Equations
    Using tropical differential equations Cristhian Garay Johana Luviano October 20, 2020 Abstract In this survey we explain from scratch the recent formalism behind tropical differential algebraic geometry and how it may be used to ex- tract combinatorial information from the set of power series solutions for systems of differential equations. 1 Introduction Finding solutions for systems of differential equations is in general a very dif- ficult task. For example, we know from [8] that it does not exist an algorithm for computing formal power series solutions for systems of algebraic partial dif- ferential equations with coefficients in the ring of complex formal power series. In this regard, the recently introduced branch of tropical differential alge- braic geometry yields an algebraic framework which gives precise combinatorial information about the set of all the formal power series solutions of systems of differential equations, incarnated in the form of a tropical fundamental theorem version for differential algebraic geometry. Both the concept and insight of the method were introduced in [6]. The construction of such correspondences is one of the main goals of the application of tropical methods in commutative algebra, whose basis is the fol- lowing: one considers a tropicalization scheme (R; S; v) as in [4], consisting of a commutative ring R (possibly endowed with some extra structure), a com- mutative idempotent semiring S and a map v : R −! S that satisfies the usual properties of a valuation. Then one considers a system of algebraic equa- tions Σ living in an R-algebra R0 together with its set of algebraic solutions Sol(Σ).
    [Show full text]
  • Algebraic Geometry Over Groups I: Algebraic Sets and Ideal Theory
    Algebraic geometry over groups I: Algebraic sets and ideal theory Gilbert Baumslag Alexei Myasnikov Vladimir Remeslennikov Abstract The object of this paper, which is the ¯rst in a series of three, is to lay the foundations of the theory of ideals and algebraic sets over groups. TABLE OF CONTENTS 1. INTRODUCTION 1.1 Some general comments 1.2 The category of G-groups 1.3 Notions from commutative algebra 1.4 Separation and discrimination 1.5 Ideals 1.6 The a±ne geometry of G-groups 1.7 Ideals of algebraic sets 1.8 The Zariski topology of equationally Noetherian groups 1.9 Decomposition theorems 1.10 The Nullstellensatz 1.11 Connections with representation theory 1.12 Related work 2. NOTIONS FROM COMMUTATIVE ALGEBRA 2.1 Domains 2.2 Equationally Noetherian groups 2.3 Separation and discrimination 2.4 Universal groups 1 3. AFFINE ALGEBRAIC SETS 3.1 Elementary properties of algebraic sets and the Zariski topology 3.2 Ideals of algebraic sets 3.3 Morphisms of algebraic sets 3.4 Coordinate groups 3.5 Equivalence of the categories of a±ne algebraic sets and coordinate groups 3.6 The Zariski topology of equationally Noetherian groups 4. IDEALS 4.1 Maximal ideals 4.2 Radicals 4.3 Irreducible and prime ideals 4.4 Decomposition theorems for ideals 5. COORDINATE GROUPS 5.1 Abstract characterization of coordinate groups 5.2 Coordinate groups of irreducible algebraic sets 5.3 Decomposition theorems for coordinate groups 6. THE NULLSTELLENSATZ 7. BIBLIOGRAPHY 2 1 Introduction 1.1 Some general comments The beginning of classical algebraic geometry is concerned with the geometry of curves and their higher dimensional analogues.
    [Show full text]