Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Commutative Algebra Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . 146 8.4 Finite Morphisms and the Fibre Theorem . 147 8.5 Projective Varieties . 150 8.6 Nonsingular Varieties . 153 8.7 Abstract Curves . 156 8.8 The Spectrum of a Ring . 159 ii 1 Preliminaries 1 Preliminaries The contents of this document come from an Algebra IV course taught by Dr. Peter Abra- menko at the University of Virginia in Spring 2016. The main theory of commutative rings are covered, along with applications to algebraic geometry towards the end. Topics include: Integral dependence Noetherian, Artinian and Dedekind rings Valuations and discrete valuation rings Dimension theory Affine and projective varieties Affine algebras Hilbert's Nullstellensatz Morphisms of varieties The commutative algebra may be found in Atiyah and MacDonald's Introduction to Commu- tative Algebra, while the algebraic geometry generally follows the first chapter of Hartshorne's Algebraic Geometry. Several topics in these notes also come from a course on commutative algebra taught by Dr. Craig Huneke at UVA in Spring 2019. The main topics I've included from this course are: associated primes, Cohen's structure theory for complete local rings, some dimension theory and notions of singularity in rings. We will adhere to several conventions throughout these notes: All rings are commutative with unity 1. A will always denote such a ring. All subrings contain 1. In particular, proper ideals are never subrings. For any ring homomorphism f : A ! B, in addition to the homomorphism axioms, we stipulate that f(1A) = 1B. In any integral domain, we assume 1 6= 0. 1.1 Radicals There are three important types of radicals that we may define in a commutative ring A. The first two are defined below. Definition. The nil radical of A is defined as the intersection of all prime ideals of A, written \ N(A) = P: prime ideals P ⊂A We say A is reduced if N(A) = 0. 1 1.1 Radicals 1 Preliminaries Definition. The Jacobson radical of A is the intersection of all maximal ideals of A, written \ J(A) = M: maximal ideals M⊂A Remark. Clearly N(A) ⊆ J(A). Lemma 1.1.1. For any x 2 A, x 2 J(A) if and only if 1 − xy is a unit in A for all y 2 A. Proof. ( =) ) Suppose A(1 − xy) 6= A for some y 2 A. Then A(1 − xy) ⊂ M for a maximal ideal M. By definition, x 2 J(A) ⊆ M and since J(A) is an ideal, xy 2 M as well. This means 1 = xy + (1 − xy) 2 M, a contradiction. Therefore A(1 − xy) = A so there is some a 2 A such that a(1 − xy) = 1; that is, 1 − xy is a unit. ( ) = ) Conversely, suppose x 62 M for some maximal ideal M ⊂ A. Then M + Ax = A by maximality of M, so b + xy = 1 for some b 2 M, or 1 − xy = b 2 M, meaning 1 − xy cannot be a unit in A. Proposition 1.1.2. N(A) = fx 2 A j xn = 0 for some n ≥ 1g. That is, the nil radical consists of all nilpotent elements in A. Proof. (⊇) Suppose xn = 0. Then for any prime ideal P , xn = 0 2 P which implies x 2 P . Thus x 2 N(A). (⊆) If x 2 A is not nilpotent, we will produce a prime ideal not containing x. Let Σ denote the set of ideals I ⊂ A such that xn 62 I for any n ≥ 1. Notice that 0 is an element of Σ since we are assuming x is not nilpotent; thus Σ is nonempty. Therefore we may apply Zorn's Lemma to choose an ideal P 2 Σ which is maximal among this collection of ideals. We claim that P is prime. Clearly P 6= A since A is not an element of Σ. Suppose y; z 2 A but y; z 62 P . Since P is maximal in Σ, the ideals P + Ay and P + Az are both strictly larger ideals than P . Thus P + Ay; P + Az 62 Σ so there exist m; n 2 N such that xm 2 P + Ay and xn 2 P + Az. Then xm+n 2 (P + Ay)(P + Az) ⊆ P + Ayz, but xm+n 62 P by assumption, so we must have yz 62 P . This proves P is prime. n Definition. For an ideal I ⊂ A, the radical of Ipis r(I) = fx 2 A j x 2 I for some n ≥ 1g. Alternate notations for the radical ideal include I and rad(I). Corollary 1.1.3. For any ideal I ⊂ A, r(I) equals the intersection of all prime ideals of A containing I. In particular, r(I) is an ideal. Proof. Consider the quotient ring A¯ = A=I. For x 2 A we have the following equivalent statements: n x 2 r(I) () there exists an n 2 N such that x 2 I n () there exists an n 2 N such that (x + I) = 0 2 A¯ () x + I is nilpotent, i.e. x + I ⊂ N(A¯) () x + I is contained in every prime of A¯ () x lies in every prime ideal of A containing I: \ Therefore r(I) = P as desired. prime ideals P ⊇I 2 1.1 Radicals 1 Preliminaries Remark. By Corollary 1.1.3, N(A) = r(0). Lemma 1.1.4. Suppose I;J ⊂ A are ideals. Then (a) I ⊆ r(I). (b) I = r(I) if and only if A=I is reduced. In particular, every prime ideal is radical. (c) r(r(I)) = r(I). (d) r(Im) = r(I) for all m 2 N. (e) r(IJ) ⊇ r(I)r(J). (f) r(I + J) = r(r(I) + r(J)). (g) r(I) = A if and only if I = A. Proof. (a) is clear from the definition. (b) By Corollary 1.1.3, r(I) equals the intersection of all primes lying over I. Let π : A ! A=I be the quotient map. Then N(A=I) = 0 () π(r(I)) = 0 () r(I) ⊆ ker π = I. By part (a), we always have I ⊆ r(I) so this shows that N(A=I) = 0 () r(I) = I. (c) By part (a), it suffices to show r(r(I)) ⊆ r(I). If x 2 r(r(I)) then xn 2 r(I) for some n ≥ 1, but then (xn)m = xnm 2 I for some m ≥ 1. Thus x 2 r(I). (d) If x 2 r(Im) then xn 2 Im for some n ≥ 1, but Im ⊆ I so this shows x 2 r(I). On the other hand, if x 2 r(I) then xn 2 I for some n ≥ 1. Letting k = maxfn; mg, we see that xk 2 Im. Hence r(I) = r(Im). (e) It suffices to prove this for elements of the form xy 2 r(I)r(J), where x 2 r(I) and y 2 r(J). Then xn 2 I and ym 2 J for some n; m ≥ 1. Without loss of generality, assume n ≥ m. Then (xy)n = xnyn 2 IJ so xy 2 r(IJ). (f) First take z 2 r(I + J), so that zn 2 I + J for some n ≥ 1. Then zn = x + y for x 2 I; y 2 J. Since I ⊆ r(I) and J ⊆ r(J) by part (a), we have zn = x + y 2 I + J ⊆ r(I) + r(J). Therefore z 2 r(r(I) + r(J)). On the other hand, if w 2 r(r(I) + r(J)) then wm 2 r(I) + r(J) for some m ≥ 1. This means wm = x + y for some x 2 r(I); y 2 r(J). In turn this says that xk 2 I and y` 2 J for some k; ` ≥ 1. Using the binomial formula, write k + ` wm(k+`) = (x + y)k+` = xk+` + (k + `)xk+`−1y + ::: + xk+`−qyq + ::: + yk+`: q Note that q ranges from 0 to k + `. When 0 ≤ q ≤ `, the qth term (the first term in the sum being the 0th term) is divisible by xk and so it lies in I.
Recommended publications
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • The Completion of a Ring with a Valuation 21
    proceedings of the american mathematical society Volume 36, Number 1, November 1972 THE COMPLETION OF A RING WITH A VALUATION HELEN E. ADAMS Abstract. This paper proves three main results : the completion of a commutative ring with respect to a Manis valuation is an integral domain; a necessary and sufficient condition is given that the completion be a field; and the completion is a field when the valuation is Harrison and the value group is archimedean ordered. 1. Introduction. In [1] we defined a generalized pseudovaluation on a ring R and found explicitly the completion of R with respect to the topology induced on R by such a pseudovaluation. Using this inverse limit character- ization of the completion of R we show, in §2, that when the codomain of a valuation on R is totally ordered, the completion of R with respect to the valuation has no (nonzero) divisors of zero and the valuation on R can be extended to a valuation on the completion. In §3, R is assumed to have an identity and so, from [1, §2], the completion has an identity: a necessary and sufficient condition is given such that each element of the completion of R has a right inverse. §§2 and 3 are immediately applicable to a Manis valuation 9?on a com- mutative ring R with identity [3], where the valuation <pis surjective and the set (p(R) is a totally ordered group. A Harrison valuation on R is a Manis valuation 9?on R such that the set {x:x e R, <p(x)> y(l)} is a finite Harrison prime [2].
    [Show full text]
  • Math 296. Homework 3 (Due Jan 28) 1
    Math 296. Homework 3 (due Jan 28) 1. Equivalence Classes. Let R be an equivalence relation on a set X. For each x ∈ X, consider the subset xR ⊂ X consisting of all the elements y in X such that xRy. A set of the form xR is called an equivalence class. (1) Show that xR = yR (as subsets of X) if and only if xRy. (2) Show that xR ∩ yR = ∅ or xR = yR. (3) Show that there is a subset Y (called equivalence classes representatives) of X such that X is the disjoint union of subsets of the form yR for y ∈ Y . Is the set Y uniquely determined? (4) For each of the equivalence relations from Problem Set 2, Exercise 5, Parts 3, 5, 6, 7, 8: describe the equivalence classes, find a way to enumerate them by picking a nice representative for each, and find the cardinality of the set of equivalence classes. [I will ask Ruthi to discuss this a bit in the discussion session.] 2. Pliability of Smooth Functions. This problem undertakes a very fundamental construction: to prove that ∞ −1/x2 C -functions are very soft and pliable. Let F : R → R be defined by F (x) = e for x 6= 0 and F (0) = 0. (1) Verify that F is infinitely differentiable at every point (don’t forget that you computed on a 295 problem set that the k-th derivative exists and is zero, for all k ≥ 1). −1/x2 ∞ (2) Let ϕ : R → R be defined by ϕ(x) = 0 for x ≤ 0 and ϕ(x) = e for x > 0.
    [Show full text]
  • The Hermite–Lindemann–Weierstraß Transcendence Theorem
    The Hermite–Lindemann–Weierstraß Transcendence Theorem Manuel Eberl March 12, 2021 Abstract This article provides a formalisation of the Hermite–Lindemann– Weierstraß Theorem (also known as simply Hermite–Lindemann or Lindemann–Weierstraß). This theorem is one of the crowning achieve- ments of 19th century number theory. The theorem states that if α1; : : : ; αn 2 C are algebraic numbers that are linearly independent over Z, then eα1 ; : : : ; eαn are algebraically independent over Q. Like the previous formalisation in Coq by Bernard [2], I proceeded by formalising Baker’s alternative formulation of the theorem [1] and then deriving the original one from that. Baker’s version states that for any algebraic numbers β1; : : : ; βn 2 C and distinct algebraic numbers αi; : : : ; αn 2 C, we have: α1 αn β1e + ::: + βne = 0 iff 8i: βi = 0 This has a number of immediate corollaries, e.g.: • e and π are transcendental • ez, sin z, tan z, etc. are transcendental for algebraic z 2 C n f0g • ln z is transcendental for algebraic z 2 C n f0; 1g 1 Contents 1 Divisibility of algebraic integers 3 2 Auxiliary facts about univariate polynomials 6 3 The minimal polynomial of an algebraic number 10 4 The lexicographic ordering on complex numbers 12 5 Additional facts about multivariate polynomials 13 5.1 Miscellaneous ........................... 13 5.2 Converting a univariate polynomial into a multivariate one . 14 6 More facts about algebraic numbers 15 6.1 Miscellaneous ........................... 15 6.2 Turning an algebraic number into an algebraic integer .... 18 6.3 Multiplying an algebraic number with a suitable integer turns it into an algebraic integer.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Commutative Algebra and Algebraic Geometry
    Commutative Algebra and Algebraic Geometry Robert Friedman August 1, 2006 2 i Disclaimer: These are rough notes for a course on commutative algebra and algebraic geometry. I would appreciate all suggestions concerning ty- pos, errors, unclear exposition or obscure exercises, and any other helpful feedback. Contents 1 Introduction to Commutative Rings 1 1.1 Introduction............................ 1 1.2 Primeideals............................ 5 1.3 Localrings............................. 9 1.4 Factorizationinintegraldomains . 10 1.5 Motivatingquestions . 18 1.6 Theprimeandmaximalspectrum . 25 1.7 Gradedringsandprojectivespaces . 31 Exercises................................. 37 2 Modules over Commutative Rings 43 2.1 Basicdefinitions.......................... 43 2.2 Directandinverselimits . 48 2.3 Exactsequences.......................... 54 2.4 Chainconditions ......................... 59 2.5 ExactnesspropertiesofHom. 62 2.6 ModulesoveraPID........................ 67 2.7 Nakayama’slemma ........................ 70 2.8 Thetensorproduct ........................ 73 2.9 Productsofaffinealgebraicsets . 81 2.10Flatness .............................. 84 Exercises................................. 89 3 Localization 98 3.1 Basicdefinitions.......................... 98 3.2 Idealsinalocalization . .101 3.3 Localizationofmodules. .103 3.4 Localpropertiesofringsandmodules . 104 ii CONTENTS iii 3.5 Regularfunctions . .107 3.6 Introductiontosheaves. .112 3.7 Schemesandringedspaces . .118 3.8 Projasascheme .........................123 3.9 Zariskilocalproperties
    [Show full text]
  • October 2013
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 429 October 2013 Society MeetingsSociety 2013 ELECTIONS voting the deadline for receipt of Meetings TO COUNCIL AND votes is 7 November 2013. and Events Members may like to note that and Events NOMINATING the LMS Election blog, moderated 2013 by the Scrutineers, can be found at: COMMITTEE http://discussions.lms.ac.uk/ Thursday 31 October The LMS 2013 elections will open on elections2013/. Good Practice Scheme 10th October 2013. LMS members Workshop, London will be contacted directly by the Future elections page 15 Electoral Reform Society (ERS), who Members are invited to make sug- Friday 15 November will send out the election material. gestions for nominees for future LMS Graduate Student In advance of this an email will be elections to Council. These should Meeting, London sent by the Society to all members be addressed to Dr Penny Davies 1 page 4 who are registered for electronic who is the Chair of the Nominat- communication informing them ing Committee (nominations@lms. Friday 15 November that they can expect to shortly re- ac.uk). Members may also make LMS AGM, London ceive some election correspondence direct nominations: details will be page 5 from the ERS. published in the April 2014 News- Monday 16 December Those not registered to receive letter or are available from Duncan SW & South Wales email correspondence will receive Turton at the LMS (duncan.turton@ Regional Meeting, all communications in paper for- lms.ac.uk). Swansea mat, both from the Society and 18-21 December from the ERS. Members should ANNUAL GENERAL LMS Prospects in check their post/email regularly in MEETING Mathematics, Durham October for communications re- page 11 garding the elections.
    [Show full text]
  • Projective, Flat and Multiplication Modules
    NEW ZEALAND JOURNAL OF MATHEMATICS Volume 31 (2002), 115-129 PROJECTIVE, FLAT AND MULTIPLICATION MODULES M a j i d M . A l i a n d D a v i d J. S m i t h (Received December 2001) Abstract. In this note all rings are commutative rings with identity and all modules are unital. We consider the behaviour of projective, flat and multipli­ cation modules under sums and tensor products. In particular, we prove that the tensor product of two multiplication modules is a multiplication module and under a certain condition the tensor product of a multiplication mod­ ule with a projective (resp. flat) module is a projective (resp. flat) module. W e investigate a theorem of P.F. Smith concerning the sum of multiplication modules and give a sufficient condition on a sum of a collection of modules to ensure that all these submodules are multiplication. W e then apply our result to give an alternative proof of a result of E l-B ast and Smith on external direct sums of multiplication modules. Introduction Let R be a commutative ring with identity and M a unital i?-module. Then M is called a multiplication module if every submodule N of M has the form IM for some ideal I of R [5]. Recall that an ideal A of R is called a multiplication ideal if for each ideal B of R with B C A there exists an ideal C of R such that B — AC. Thus multiplication ideals are multiplication modules. In particular, invertible ideals of R are multiplication modules.
    [Show full text]
  • 1 Affine Varieties
    1 Affine Varieties We will begin following Kempf's Algebraic Varieties, and eventually will do things more like in Hartshorne. We will also use various sources for commutative algebra. What is algebraic geometry? Classically, it is the study of the zero sets of polynomials. We will now fix some notation. k will be some fixed algebraically closed field, any ring is commutative with identity, ring homomorphisms preserve identity, and a k-algebra is a ring R which contains k (i.e., we have a ring homomorphism ι : k ! R). P ⊆ R an ideal is prime iff R=P is an integral domain. Algebraic Sets n n We define affine n-space, A = k = f(a1; : : : ; an): ai 2 kg. n Any f = f(x1; : : : ; xn) 2 k[x1; : : : ; xn] defines a function f : A ! k : (a1; : : : ; an) 7! f(a1; : : : ; an). Exercise If f; g 2 k[x1; : : : ; xn] define the same function then f = g as polynomials. Definition 1.1 (Algebraic Sets). Let S ⊆ k[x1; : : : ; xn] be any subset. Then V (S) = fa 2 An : f(a) = 0 for all f 2 Sg. A subset of An is called algebraic if it is of this form. e.g., a point f(a1; : : : ; an)g = V (x1 − a1; : : : ; xn − an). Exercises 1. I = (S) is the ideal generated by S. Then V (S) = V (I). 2. I ⊆ J ) V (J) ⊆ V (I). P 3. V ([αIα) = V ( Iα) = \V (Iα). 4. V (I \ J) = V (I · J) = V (I) [ V (J). Definition 1.2 (Zariski Topology). We can define a topology on An by defining the closed subsets to be the algebraic subsets.
    [Show full text]
  • Modules Embedded in a Flat Module and Their Approximations
    International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 2, Issue 3, March 2014) Modules Embedded in a Flat Module and their Approximations Asma Zaffar1, Muhammad Rashid Kamal Ansari2 Department of Mathematics Sir Syed University of Engineering and Technology Karachi-75300S Abstract--An F- module is a module which is embedded in a Finally, the theory developed above is applied to flat flat module F. Modules embedded in a flat module approximations particularly the I (F)-flat approximations. demonstrate special generalized features. In some aspects We start with some necessary definitions. these modules resemble torsion free modules. This concept generalizes the concept of modules over IF rings and modules 1.1 Definition: Mmod-A is said to be a right F-module over rings whose injective hulls are flat. This study deals with if it is embedded in a flat module F ≠ M mod-A. Similar F-modules in a non-commutative scenario. A characterization definition holds for a left F-module. of F-modules in terms of torsion free modules is also given. Some results regarding the dual concept of homomorphic 1.2 Definition: A ring A is said to be an IF ring if its every images of flat modules are also obtained. Some possible injective module is flat [4]. applications of the theory developed above to I (F)-flat module approximation are also discussed. 1.3 Definition [Von Neumann]: A ring A is regular if, for each a A, and some another element x A we have axa Keyswords-- 16E, 13Dxx = a.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Splitting of Vector Bundles on Punctured Spectrum of Regular Local Rings
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2005 Splitting of Vector Bundles on Punctured Spectrum of Regular Local Rings Mahdi Majidi-Zolbanin Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/1765 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Splitting of Vector Bundles on Punctured Spectrum of Regular Local Rings by Mahdi Majidi-Zolbanin A dissertation submitted to the Graduate Faculty in Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of NewYork. 2005 UMI Number: 3187456 Copyright 2005 by Majidi-Zolbanin, Mahdi All rights reserved. UMI Microform 3187456 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii c 2005 Mahdi Majidi-Zolbanin All Rights Reserved iii This manuscript has been read and accepted for the Graduate Faculty in Mathematics in satisfaction of the dissertation requirements for the degree of Doctor of Philosophy. Lucien Szpiro Date Chair of Examining Committee Jozek Dodziuk Date Executive Officer Lucien Szpiro Raymond Hoobler Alphonse Vasquez Ian Morrison Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iv Abstract Splitting of Vector Bundles on Punctured Spectrum of Regular Local Rings by Mahdi Majidi-Zolbanin Advisor: Professor Lucien Szpiro In this dissertation we study splitting of vector bundles of small rank on punctured spectrum of regular local rings.
    [Show full text]