Introduction to Projective Varieties by Enrique Arrondo(*)

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Projective Varieties by Enrique Arrondo(*) Introduction to projective varieties by Enrique Arrondo(*) Version of November 26, 2017 This is still probably far from being a final version, especially since I had no time yet to complete the second part (which is so far not well connected with the first one). Anyway, any kind of comments are very welcome, in particular those concerning the general structure, or suggestions for shorter and/or correct proofs. 0. Algebraic background 1. Projective sets and their ideals; Weak Nullstellensatz 2. Irreducible components 3. Hilbert polynomial. Nullstellensatz 4. Graded modules; resolutions and primary decomposition 5. Dimension, degree and arithmetic genus 6. Product of varieties 7. Regular maps 8. Properties of morphisms 9. Resolutions and dimension 10. Ruled varieties 11. Tangent spaces and cones; smoothness 12. Transversality 13. Parameter spaces 14. Affine varieties vs projective varieties; sheaves 15. The local ring at a point 16. Introduction to affine and projective schemes 17. Vector bundles 18. Coherent sheaves 19. Schemes (*) Departamento de Algebra,´ Facultad de Ciencias Matem´aticas, Universidad Com- plutense de Madrid, 28040 Madrid, Spain, Enrique [email protected] 1 The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained \by hand". The notes are based on some basic PhD courses (Milan 1998 and Florence 2000) and a summer course (Perugia 1998) that I taught. I decided to produce these notes while preparing new similar courses (Milan and Perugia 2001). My approach consists of avoiding all the algebraic preliminaries that a standard al- gebraic geometry course uses for affine varieties and thus start directly with projective varieties (which are the varieties that have good properties). The main technique I use is the Hilbert polynomial, from which it is possible to rigorously and intuitively introduce all the invariants of a projective variety (dimension, degree and arithmetic genus). It is also possible to easily prove the projective Nullstellensatz (from which the standard affine Nullstellensatz can in fact be obtained). The price to pay for this shortcut is that the way to produce the important results (the most important one for practical purposes is the theorem about the dimension of the fibers) is not always clear, since many results or even definitions have local nature. This was in fact the eventual motivation to write these notes, to show that it is possible to follow such a risky path in a coherent way. Moreover, if the students of a course have all the delicate steps written down, it is possible for the teacher to avoid the too technical results and concentrate on examples and intuitive results. If the goal of theses notes is achieved, an interested student with very small knowledge of commutative algebra (a sight to Chapter 0, devoted to preliminaries should be enough to figure out the required background) should be able to acquire enough techniques to ma- nipulate varieties and families and compute their dimensions. And if the student becomes interested, he/she could then follow a more advanced text or course. The present version contains the beginning of a second part which, if ever finished, will eventually contain a first introduction to the theory of schemes. I deeply thank many people, and very especially Sof´ıaCobo, for pointing out many misprints of previous versions. 2 0. Algebraic background We will recall in this chapter the main algebraic ingredients that the reader is as- sumed to know as a minimum background for the rest of the notes. We will just give the appropriate definitions, state the results and leave the proofs (for those for whom they are new concepts) as exercises, as long as it looks reasonable to do so. The key results the reader should know about ideals are collected in the following exercise. Exercise 0.1. Let R be a (commutative and unitary) ring and I an ideal. (i) If I is maximal then I is prime. p (ii) The set I := fF 2 R j F d 2 I for some d 2 Ng is an ideal of R. p (iii) If I is prime, then it is radical (i.e. I = I). p p p (iv) If I = I1 \ ::: \ In then I = I1 \ ::: \ In. (v) If I is prime and I1 \ ::: \ In ⊂ I then Ii ⊂ I for some i = 1; : : : ; n. (vi) If I is an ideal contained in a finite union of prime ideals, then I is contained in one of those prime ideals. p (vii) If I is any ideal of R, then I is the intersection of the prime ideals containing I. p [Hint: If f 62 I, use Zorn's Lemma to find a maximal element of the set of ideals p J ⊃ I such that f 62 J, and prove that such a maximal element is a prime ideal] (viii) If R0 is another ring, f : R0 ! R is a ring homomorphism (we will always assume that a ring homomorphism sends the unit element of R0 to the unit element of R) and I is a prime ideal of R, then f −1(I) is a prime ideal of R0. Definition. A primary ideal of a ring R is an ideal I with the property that if FG 2 I but G 62 I then there exists some d 2 such that F d 2 I. It is immediate to see that if I p N is primary, then P := I is a prime ideal. The ideal I is then said to be P -primary. Exercise 0.2. Let I be an ideal of a ring R. p (i) Prove that if I is primary then I is prime. (ii) Find a counterexample showing that it is not true that an ideal whose radical is prime is necessarily primary (the reader should be able to produce many examples after section 2). p (iii) If I is a maximal ideal, prove that I is a primary ideal. (iv) If I = \iIi where each Ii is a P -primary ideal, then I is also P -primary. (v) If R is a polynomial ring and I is generated by f m, f being an irreducible polynomial, then I is (f) − primary. 3 (vi) If R0 is another ring, f : R0 ! R is a ring homomorphism and I is P -primary, then f −1(I) is f −1(P )-primary (observe that from Exercise 0.1(viii) f −1(P ) is a prime ideal). We are going to work with polynomial rings over a field. The main result about these rings is that all their ideals can be generated by a finite number of elements. This will be a consequence of the so-called Hilbert's bases theorem, which we will prove below. Definition. A ring R is called a noetherian ring if any ideal of I admits a finite number of generators, or equivalently if R does not contain an infinite strictly ascending chain of ideals I1 ⊆= I2 ⊆= :::. Exercise 0.3. Prove that indeed the above two definitions are equivalent. [Hint: Observe that the union of all the ideals in an ascending chain is an ideal]. Theorem 0.4 (Hilbert's basis theorem). Let R be a noetherian ring. Then the polynomial ring R[X] is noetherian. Proof: Let I be an ideal of R[X]. We can assume I 6= R[X], since otherwise 1 would be a generator of I. For each d 2 N, the set Jd := fr 2 R j r is the leading coefficient of some polynomial of degree d in Ig is easily seen to be an ideal of R (if we take the convention that 0 2 Jd) and J1 ⊂ J2 ⊂ :::. Since R is noetherian, there exists d0 2 N such that Jd = Jd0 if d ≥ d0. On the other hand, we can find polynomials f1; : : : ; fm 2 I such that each J0;:::;Jd0 is generated by the leading coefficients of some (not necessarily all) of these polynomials. Let us see that these polynomials generate I. Take f 2 I and let d be its degree. Assume first that d ≥ d0. Then the leading coefficient of f is a linear combination (with coefficients in R) of the leading coefficients of d−deg fi f1; : : : ; fm. Multiplying each fi by X we see that there exist monomials h1; : : : ; hn 2 R[X] such that f − h1f1 − ::: − hnfn (which is still in I) has degree strictly less than d. Iterating the process we arrive to g1; : : : ; gn 2 R[X] such that f−g1f1−:::−gnfn has degree strictly less that d0. Hence we can assume d < d0. But since now Jd is generated by some leading coefficients of f1; : : : ; fn, we can find r1; : : : ; rn 2 R such that f − r1f1 − ::: − rnfn has degree strictly smaller than d. Iterating the process till degree zero we then find that it is possible to write f as a linear combination of f1; : : : ; fn , which concludes the proof. Exercise 0.5. Prove a stronger result in case R is a field, namely that any ideal in K[X] is principal, i.e. generated by one polynomial (a ring with this property is called a principal ideal domain or PID for short). [Hint: Consider a nonzero polynomial of minimum degree 4 of an ideal and prove, dividing by it, that any other polynomial of the ideal is a multiple of it]. Exercise 0.6. Prove, using induction on n and the Hilbert's basis theorem, that the polynomial ring K[X1;:::;Xn] is noetherian. Exercise 0.7. Prove that, for any ideal I ⊂ K[X1;:::;Xn], there exists some m 2 N such p m that I ⊂ I (in fact this is true for any ideal of a noetherian ring).
Recommended publications
  • Arxiv:2006.16553V2 [Math.AG] 26 Jul 2020
    ON ULRICH BUNDLES ON PROJECTIVE BUNDLES ANDREAS HOCHENEGGER Abstract. In this article, the existence of Ulrich bundles on projective bundles P(E) → X is discussed. In the case, that the base variety X is a curve or surface, a close relationship between Ulrich bundles on X and those on P(E) is established for specific polarisations. This yields the existence of Ulrich bundles on a wide range of projective bundles over curves and some surfaces. 1. Introduction Given a smooth projective variety X, polarised by a very ample divisor A, let i: X ֒→ PN be the associated closed embedding. A locally free sheaf F on X is called Ulrich bundle (with respect to A) if and only if it satisfies one of the following conditions: • There is a linear resolution of F: ⊕bc ⊕bc−1 ⊕b0 0 → OPN (−c) → OPN (−c + 1) →···→OPN → i∗F → 0, where c is the codimension of X in PN . • The cohomology H•(X, F(−pA)) vanishes for 1 ≤ p ≤ dim(X). • For any finite linear projection π : X → Pdim(X), the locally free sheaf π∗F splits into a direct sum of OPdim(X) . Actually, by [18], these three conditions are equivalent. One guiding question about Ulrich bundles is whether a given variety admits an Ulrich bundle of low rank. The existence of such a locally free sheaf has surprisingly strong implications about the geometry of the variety, see the excellent surveys [6, 14]. Given a projective bundle π : P(E) → X, this article deals with the ques- tion, what is the relation between Ulrich bundles on the base X and those on P(E)? Note that answers to such a question depend much on the choice arXiv:2006.16553v3 [math.AG] 15 Aug 2021 of a very ample divisor.
    [Show full text]
  • Projective Varieties and Their Sheaves of Regular Functions
    Math 6130 Notes. Fall 2002. 4. Projective Varieties and their Sheaves of Regular Functions. These are the geometric objects associated to the graded domains: C[x0;x1; :::; xn]=P (for homogeneous primes P ) defining“global” complex algebraic geometry. Definition: (a) A subset V ⊆ CPn is algebraic if there is a homogeneous ideal I ⊂ C[x ;x ; :::; x ] for which V = V (I). 0 1 n p (b) A homogeneous ideal I ⊂ C[x0;x1; :::; xn]isradical if I = I. Proposition 4.1: (a) Every algebraic set V ⊆ CPn is the zero locus: V = fF1(x1; :::; xn)=F2(x1; :::; xn)=::: = Fm(x1; :::; xn)=0g of a finite set of homogeneous polynomials F1; :::; Fm 2 C[x0;x1; :::; xn]. (b) The maps V 7! I(V ) and I 7! V (I) ⊂ CPn give a bijection: n fnonempty alg sets V ⊆ CP g$fhomog radical ideals I ⊂hx0; :::; xnig (c) A topology on CPn, called the Zariski topology, results when: U ⊆ CPn is open , Z := CPn − U is an algebraic set (or empty) Proof: Note the similarity with Proposition 3.1. The proof is the same, except that Exercise 2.5 should be used in place of Corollary 1.4. Remark: As in x3, the bijection of (b) is \inclusion reversing," i.e. V1 ⊆ V2 , I(V1) ⊇ I(V2) and irreducibility and the features of the Zariski topology are the same. Example: A projective hypersurface is the zero locus: n n V (F )=f(a0 : a1 : ::: : an) 2 CP j F (a0 : a1 : ::: : an)=0}⊂CP whose irreducible components, as in x3, are obtained by factoring F , and the basic open sets of CPn are, as in x3, the complements of hypersurfaces.
    [Show full text]
  • The Riemann-Roch Theorem
    The Riemann-Roch Theorem by Carmen Anthony Bruni A project presented to the University of Waterloo in fulfillment of the project requirement for the degree of Master of Mathematics in Pure Mathematics Waterloo, Ontario, Canada, 2010 c Carmen Anthony Bruni 2010 Declaration I hereby declare that I am the sole author of this project. This is a true copy of the project, including any required final revisions, as accepted by my examiners. I understand that my project may be made electronically available to the public. ii Abstract In this paper, I present varied topics in algebraic geometry with a motivation towards the Riemann-Roch theorem. I start by introducing basic notions in algebraic geometry. Then I proceed to the topic of divisors, specifically Weil divisors, Cartier divisors and examples of both. Linear systems which are also associated with divisors are introduced in the next chapter. These systems are the primary motivation for the Riemann-Roch theorem. Next, I introduce sheaves, a mathematical object that encompasses a lot of the useful features of the ring of regular functions and generalizes it. Cohomology plays a crucial role in the final steps before the Riemann-Roch theorem which encompasses all the previously developed tools. I then finish by describing some of the applications of the Riemann-Roch theorem to other problems in algebraic geometry. iii Acknowledgements I would like to thank all the people who made this project possible. I would like to thank Professor David McKinnon for his support and help to make this project a reality. I would also like to thank all my friends who offered a hand with the creation of this project.
    [Show full text]
  • 8. Grassmannians
    66 Andreas Gathmann 8. Grassmannians After having introduced (projective) varieties — the main objects of study in algebraic geometry — let us now take a break in our discussion of the general theory to construct an interesting and useful class of examples of projective varieties. The idea behind this construction is simple: since the definition of projective spaces as the sets of 1-dimensional linear subspaces of Kn turned out to be a very useful concept, let us now generalize this and consider instead the sets of k-dimensional linear subspaces of Kn for an arbitrary k = 0;:::;n. Definition 8.1 (Grassmannians). Let n 2 N>0, and let k 2 N with 0 ≤ k ≤ n. We denote by G(k;n) the set of all k-dimensional linear subspaces of Kn. It is called the Grassmannian of k-planes in Kn. Remark 8.2. By Example 6.12 (b) and Exercise 6.32 (a), the correspondence of Remark 6.17 shows that k-dimensional linear subspaces of Kn are in natural one-to-one correspondence with (k − 1)- n− dimensional linear subspaces of P 1. We can therefore consider G(k;n) alternatively as the set of such projective linear subspaces. As the dimensions k and n are reduced by 1 in this way, our Grassmannian G(k;n) of Definition 8.1 is sometimes written in the literature as G(k − 1;n − 1) instead. Of course, as in the case of projective spaces our goal must again be to make the Grassmannian G(k;n) into a variety — in fact, we will see that it is even a projective variety in a natural way.
    [Show full text]
  • Chapter 4 the Algebra–Geometry Dictionary
    Chapter 4 The Algebra–Geometry Dictionary In this chapter, we will explore the correspondence between ideals and varieties. In §§1 and 2, we will prove the Nullstellensatz, a celebrated theorem which iden- tifies exactly which ideals correspond to varieties. This will allow us to construct a “dictionary” between geometry and algebra, whereby any statement about varieties can be translated into a statement about ideals (and conversely). We will pursue this theme in §§3 and 4, where we will define a number of natural algebraic operations on ideals and study their geometric analogues. In keeping with the computational emphasis of the book, we will develop algorithms to carry out the algebraic op- erations. In §§5 and 6, we will study the more important algebraic and geometric concepts arising out of the Hilbert Basis Theorem: notably the possibility of decom- posing a variety into a union of simpler varieties and the corresponding algebraic notion of writing an ideal as an intersection of simpler ideals. In §7, we will prove the Closure Theorem from Chapter 3 using the tools developed in this chapter. §1 Hilbert’s Nullstellensatz In Chapter 1, we saw that a varietyV k n can be studied by passing to the ideal ⊆ I(V)= f k[x 1,...,x n] f(a)= 0 for alla V { ∈ | ∈ } of all polynomials vanishing onV. Hence, we have a map affine varieties ideals V −→ I(V). Conversely, given an idealI k[x 1,...,x n], we can define the set ⊆ V(I)= a k n f(a)= 0 for allf I . { ∈ | ∈ } © Springer International Publishing Switzerland 2015 175 D.A.
    [Show full text]
  • An Introduction to Volume Functions for Algebraic Cycles
    AN INTRODUCTION TO VOLUME FUNCTIONS FOR ALGEBRAIC CYCLES Abstract. DRAFT VERSION DRAFT VERSION 1. Introduction One of the oldest problems in algebraic geometry is the Riemann-Roch problem: given a divisor L on a smooth projective variety X, what is the dimension of H0(X; L)? Even better, one would like to calculate the entire 0 section ring ⊕m2ZH (X; mL). It is often quite difficult to compute this ring precisely; for example, section rings need not be finitely generated. Even if we cannot completely understand the section ring, we can still extract information by studying its asymptotics { how does H0(X; mL) behave as m ! 1? This approach is surprisingly fruitful. On the one hand, asymptotic invariants are easier to compute and have nice variational properties. On the other, they retain a surprising amount of geometric information. Such invariants have played a central role in the development of birational geometry over the last forty years. Perhaps the most important asymptotic invariant for a divisor L is the volume, defined as dim H0(X; mL) vol(L) = lim sup n : m!1 m =n! In other words, the volume is the section ring analogue of the Hilbert-Samuel multiplicity for graded rings. As we will see shortly, the volume lies at the intersection of many fields of mathematics and has a variety of interesting applications. This expository paper outlines recent progress in the construction of \volume-type" functions for cycles of higher codimension. The main theme is the relationship between: • the positivity of cycle classes, • an asymptotic approach to enumerative geometry, and • the convex analysis of positivity functions.
    [Show full text]
  • Notes on Irreducible Ideals
    BULL. AUSTRAL. MATH. SOC. I3AI5, I3H05, I 4H2O VOL. 31 (1985), 321-324. NOTES ON IRREDUCIBLE IDEALS DAVID J. SMITH Every ideal of a Noetherian ring may be represented as a finite intersection of primary ideals. Each primary ideal may be decomposed as an irredundant intersection of irreducible ideals. It is shown that in the case that Q is an Af-primary ideal of a local ring (if, M) satisfying the condition that Q : M = Q + M where s is the index of Q , then all irreducible components of Q have index s . (Q is "index- unmixed" .) This condition is shown to hold in the case that Q is a power of the maximal ideal of a regular local ring, and also in other cases as illustrated by examples. Introduction Let i? be a commutative ring with identity. An ideal J of R is irreducible if it is not a proper intersection of any two ideals of if . A discussion of some elementary properties of irreducible ideals is found in Zariski and Samuel [4] and Grobner [!]• If i? is Noetherian then every ideal of if has an irredundant representation as a finite intersection of irreducible ideals, and every irreducible ideal is primary. It is properties of representations of primary ideals as intersections of irreducible ideals which will be discussed here. We assume henceforth that if is Noetherian. Received 25 October 1981*. Copyright Clearance Centre, Inc. Serial-fee code: OOOl*-9727/85 $A2.00 + 0.00. 32 1 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.22, on 24 Sep 2021 at 06:01:50, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
    [Show full text]
  • Mel Hochster's Lecture Notes
    MATH 614 LECTURE NOTES, FALL, 2017 by Mel Hochster Lecture of September 6 We assume familiarity with the notions of ring, ideal, module, and with the polynomial ring in one or finitely many variables over a commutative ring, as well as with homomor- phisms of rings and homomorphisms of R-modules over the ring R. As a matter of notation, N ⊆ Z ⊆ Q ⊆ R ⊆ C are the non-negative integers, the integers, the rational numbers, the real numbers, and the complex numbers, respectively, throughout this course. Unless otherwise specified, all rings are commutative, associative, and have a multiplica- tive identity 1 (when precision is needed we write 1R for the identity in the ring R). It is possible that 1 = 0, in which case the ring is f0g, since for every r 2 R, r = r ·1 = r ·0 = 0. We shall assume that a homomorphism h of rings R ! S preserves the identity, i.e., that h(1R) = 1S. We shall also assume that all given modules M over a ring R are unital, i.e., that 1R · m = m for all m 2 M. When R and S are rings we write S = R[θ1; : : : ; θn] to mean that S is generated as a ring over its subring R by the elements θ1; : : : ; θn. This means that S contains R and the elements θ1; : : : ; θn, and that no strictly smaller subring of S contains R and the θ1; : : : ; θn. It also means that every element of S can be written (not necessarily k1 kn uniquely) as an R-linear combination of the monomials θ1 ··· θn .
    [Show full text]
  • Chapter 2 Affine Algebraic Geometry
    Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F.
    [Show full text]
  • Math 632: Algebraic Geometry Ii Cohomology on Algebraic Varieties
    MATH 632: ALGEBRAIC GEOMETRY II COHOMOLOGY ON ALGEBRAIC VARIETIES LECTURES BY PROF. MIRCEA MUSTA¸TA;˘ NOTES BY ALEKSANDER HORAWA These are notes from Math 632: Algebraic geometry II taught by Professor Mircea Musta¸t˘a in Winter 2018, LATEX'ed by Aleksander Horawa (who is the only person responsible for any mistakes that may be found in them). This version is from May 24, 2018. Check for the latest version of these notes at http://www-personal.umich.edu/~ahorawa/index.html If you find any typos or mistakes, please let me know at [email protected]. The problem sets, homeworks, and official notes can be found on the course website: http://www-personal.umich.edu/~mmustata/632-2018.html This course is a continuation of Math 631: Algebraic Geometry I. We will assume the material of that course and use the results without specific references. For notes from the classes (similar to these), see: http://www-personal.umich.edu/~ahorawa/math_631.pdf and for the official lecture notes, see: http://www-personal.umich.edu/~mmustata/ag-1213-2017.pdf The focus of the previous part of the course was on algebraic varieties and it will continue this course. Algebraic varieties are closer to geometric intuition than schemes and understanding them well should make learning schemes later easy. The focus will be placed on sheaves, technical tools such as cohomology, and their applications. Date: May 24, 2018. 1 2 MIRCEA MUSTA¸TA˘ Contents 1. Sheaves3 1.1. Quasicoherent and coherent sheaves on algebraic varieties3 1.2. Locally free sheaves8 1.3.
    [Show full text]
  • The Concept of a Simple Point of an Abstract Algebraic Variety
    THE CONCEPT OF A SIMPLE POINT OF AN ABSTRACT ALGEBRAIC VARIETY BY OSCAR ZARISKI Contents Introduction. 2 Part I. The local theory 1. Notation and terminology. 5 2. The local vector space?á{W/V). 6 2.1. The mapping m—»m/tri2. 6 2.2. Reduction to dimension zero. 7 2.3. The linear transformation 'M(W/V)->'M(W/V'). 8 3. Simple points. 9 3.1. Definition of simple loci. 9 3.2. Geometric aspects of the definition. 10 3.3. Local ideal bases at a simple point. 12 3.4. Simple zeros of ideals. 14 4. Simple subvarieties. 15 4.1. Generalization of the preceding results. 15 4.2. Singular subvarieties and singular points. 16 4.3. Proof of Theorem 3. 17 4.4. Continuation of the proof. 17 4.5. The case of a reducible variety. 19 5. Simple loci and regular rings. 19 5.1. The identity of the two concepts. 19 5.2. Unique local factorization at simple loci. 22 5.3. The abstract analogue of Theorem 3 and an example of F. K. Schmidt.... 23 Part II. Jacobian criteria for simple loci 6. The vector spaceD(W0 of local differentials. 25 6.1. The local ^-differentials in S„. 25 6.2. The linear transformationM(W/S„)-+<D(W). 25 7. Jacobian criterion for simple points: the separable case. 26 7.1. Criterion for uniformizing parameters. 26 7.2. Criterion for simple points. 28 8. Continuation of the separable case: generalization to higher varieties in Sn. 28 8.1. Extension of the preceding results.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]