WES Gene Package Multiple Congenital Anomalie

Total Page:16

File Type:pdf, Size:1020Kb

WES Gene Package Multiple Congenital Anomalie Whole Exome Sequencing Gene package Multiple congenital anomalie, version 6, 30‐7‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400[Blood group, P1Pk system, p phenotype], 111400NOR po 607922 141 100 100 99 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 88 100 100 100 AAGAB Keratoderma, palmoplantar, punctate type IA, 148600 614888 51 100 100 89 AARS Charcot‐Marie‐Tooth disease, axonal, type 2N, 613287 601065 78 100 99 93 Epileptic encephalopathy, early infantile, 29, 616339 AARS2 Combined oxidative phosphorylation deficiency 8, 614096 612035 117 100 100 100 Leukoencephalopathy, progressive, with ovarian failure, 615889 AASS Hyperlysinemia, 238700 605113 56 100 96 86 Saccharopinuria, 268700 ABAT GABA‐transaminase deficiency, 613163 137150 95 100 99 94 ABCA1 {Coronary artery disease in familial hypercholesterolemia, protection against}, 143890 600046 81 100 99 94 HDL deficiency, type 2, 604091 Tangier disease, 205400 ABCA12 Ichthyosis, congenital, autosomal recessive 4A, 601277 607800 58 100 99 90 Ichthyosis, congenital, autosomal recessive 4B (harlequin), 242500 ABCA3 Surfactant metabolism dysfunction, pulmonary, 3, 610921 601615 104 100 100 97 Whole exome sequencing Gene package Multiple congenital anomalie version 6, 30‐7‐2018 HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x ABCA4 Cone‐rod dystrophy 3, 604116 601691 85 100 99 95 Fundus flavimaculatus, 248200 {Macular degeneration, age‐related, 2}, 153800 Retinal dystrophy, early‐onset severe, 248200 Retinitis pigmentosa 19, 601718 Stargardt disease 1, 248200 ABCB11 Cholestasis, benign recurrent intrahepatic, 2, 605479 603201 56 100 99 90 Cholestasis, progressive familial intrahepatic 2, 601847 ABCB4 Cholestasis, intrahepatic, of pregnancy, 3, 614972 171060 57 100 98 85 Cholestasis, progressive familial intrahepatic 3, 602347 Gallbladder disease 1, 600803 ABCB6 [Blood group, Langereis system], 111600 605452 96 100 100 98 Dyschromatosis universalis hereditaria 3, 615402 Microphthalmia, isolated, with coloboma 7, 614497 Pseudohyperkalemia, familial, 2, due to red cell leak, 609153 ABCB7 Anemia, sideroblastic, with ataxia, 301310 300135 53 100 98 81 ABCC2 Dubin‐Johnson syndrome, 237500 601107 64 100 99 91 ABCC6 Arterial calcification, generalized, of infancy, 2, 614473 603234 124 100 100 99 Pseudoxanthoma elasticum, 264800 Pseudoxanthoma elasticum, forme fruste, 177850 ABCC8 Diabetes mellitus, noninsulin‐dependent, 125853 600509 99 100 100 98 Diabetes mellitus, permanent neonatal, 606176 Diabetes mellitus, transient neonatal 2, 610374 Hyperinsulinemic hypoglycemia, familial, 1, 256450 Hypoglycemia of infancy, leucine‐sensitive, 240800 ABCC9 Atrial fibrillation, familial, 12, 614050 601439 55 100 98 90 Cardiomyopathy, dilated, 1O, 608569 Hypertrichotic osteochondrodysplasia, 239850 ABCD1 Adrenoleukodystrophy, 300100 300371 75 85 76 72 Adrenomyeloneuropathy, adult, 300100 ABCD4 Methylmalonic aciduria and homocystinuria, cblJ type, 614857 603214 98 100 100 98 ABCG5 Sitosterolemia, 210250 605459 70 100 100 98 ABCG8 {Gallbladder disease 4}, 611465 605460 138 100 97 95 Sitosterolemia, 210250 ABHD12 Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract, 612674 613599 57 100 100 91 ABHD5 Chanarin‐Dorfman syndrome, 275630 604780 62 100 100 95 ABL1 Congenital heart defects and skeletal malformations syndrome, 617602 189980 129 100 100 99 Leukemia, Philadelphia chromosome‐positive, resistant to imatinib Whole exome sequencing Gene package Multiple congenital anomalie version 6, 30‐7‐2018 HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x ACAD8 Isobutyryl‐CoA dehydrogenase deficiency, 611283 604773 163 100 100 100 ACAD9 Mitochondrial complex I deficiency due to ACAD9 deficiency, 611126 611103 88 100 100 99 ACADM Acyl‐CoA dehydrogenase, medium chain, deficiency of, 201450 607008 58 100 99 90 ACADS Acyl‐CoA dehydrogenase, short‐chain, deficiency of, 201470 606885 118 100 100 100 ACADSB 2‐methylbutyrylglycinuria, 610006 600301 59 100 99 86 ACADVL VLCAD deficiency, 201475 609575 109 100 100 97 ACAN Short stature and advanced bone age, with or without early‐onset osteoarthritis and/or osteochondritis 155760 221 100 100 98 dissecans, 165800 ?Spondyloepimetaphyseal dysplasia, aggrecan type, 612813 ?Spondyloepiphyseal dysplasia, Kimberley type, 608361 ACAT1 Alpha‐methylacetoacetic aciduria, 203750 607809 62 100 98 89 ACE [Angiotensin I‐converting enzyme, benign serum increase] 106180 99 100 100 99 {Microvascular complications of diabetes 3}, 612624 {Myocardial infarction, susceptibility to} Renal tubular dysgenesis, 267430 {SARS, progression of} {Stroke, hemorrhagic}, 614519 ACO2 Infantile cerebellar‐retinal degeneration, 614559 100850 138 100 97 94 ?Optic atrophy 9, 616289 ACOX1 Peroxisomal acyl‐CoA oxidase deficiency, 264470 609751 95 100 100 98 ACP5 Spondyloenchondrodysplasia with immune dysregulation, 607944 171640 133 100 100 100 ACSF3 Combined malonic and methylmalonic aciduria, 614265 614245 144 100 100 99 ACSL4 Mental retardation, X‐linked 63, 300387 300157 49 100 98 83 ACSL6 Myelodysplastic syndrome 604443 74 100 100 95 Myelogenous leukemia, acute ACTA1 Myopathy, actin, congenital, with cores, 161800 102610 126 100 100 100 Myopathy, actin, congenital, with excess of thin myofilaments, 161800 Myopathy, congenital, with fiber‐type disproportion 1, 255310 ?Myopathy, scapulohumeroperoneal, 616852 Nemaline myopathy 3, autosomal dominant or recessive, 161800 ACTA2 Aortic aneurysm, familial thoracic 6, 611788 102620 163 100 100 100 Moyamoya disease 5, 614042 Multisystemic smooth muscle dysfunction syndrome, 613834 ACTB Baraitser‐Winter syndrome 1, 243310 102630 208 100 100 100 ?Dystonia, juvenile‐onset, 607371 Whole exome sequencing Gene package Multiple congenital anomalie version 6, 30‐7‐2018 HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x ACTC1 Atrial septal defect 5, 612794 102540 180 100 100 100 Cardiomyopathy, dilated, 1R, 613424 Cardiomyopathy, hypertrophic, 11, 612098 Left ventricular noncompaction 4, 613424 ACTG1 Baraitser‐Winter syndrome 2, 614583 102560 174 100 100 100 Deafness, autosomal dominant 20/26, 604717 ACTN1 Bleeding disorder, platelet‐type, 15, 615193 102575 109 100 100 99 ACTN4 Glomerulosclerosis, focal segmental, 1, 603278 604638 112 100 100 99 ACVR1 Fibrodysplasia ossificans progressiva, 135100 102576 65 100 100 96 ACVR1B Pancreatic cancer, somatic 601300 68 100 100 96 ACVR2B Heterotaxy, visceral, 4, autosomal, 613751 602730 100 100 100 97 ACVRL1 Telangiectasia, hereditary hemorrhagic, type 2, 600376 601284 92 100 100 94 ACY1 Aminoacylase 1 deficiency, 609924 104620 99 100 100 100 ADA Adenosine deaminase deficiency, partial, 102700 608958 79 100 100 95 Severe combined immunodeficiency due to ADA deficiency, 102700 ADA2 Polyarteritis nodosa, childhood‐onset, 615688 607575 91 100 100 97 ?Sneddon syndrome, 182410 ADAM10 {Alzheimer disease 18, susceptibility to}, 615590 602192 49 100 98 82 Reticulate acropigmentation of Kitamura, 615537 ADAM17 ?Inflammatory skin and bowel disease, neonatal, 1, 614328 603639 58 100 98 89 ADAM9 Cone‐rod dystrophy 9, 612775 602713 50 100 98 84 ADAMTS10 Weill‐Marchesani syndrome 1, recessive, 277600 608990 103 100 100 99 ADAMTS13 Thrombotic thrombocytopenic purpura, familial, 274150 604134 92 98 97 95 ADAMTS17 Weill‐Marchesani 4 syndrome, recessive, 613195 607511 96 97 96 93 ADAMTS18 Microcornea, myopic chorioretinal atrophy, and telecanthus, 615458 607512 69 100 99 96 ADAMTS2 Ehlers‐Danlos syndrome, dermatosparaxis type, 225410 604539 108 100 100 99 ADAMTSL2 Geleophysic dysplasia 1, 231050 612277 89 100 100 97 ADAMTSL4 Ectopia lentis et pupillae, 225200 610113 110 100 100 99 Ectopia lentis, isolated, autosomal recessive, 225100 ADAR Aicardi‐Goutieres syndrome 6, 615010 146920 79 100 100 98 Dyschromatosis symmetrica hereditaria, 127400 ADAT3 Mental retardation, autosomal recessive 36, 615286 615302 126 100 100 100 ADCY5 Dyskinesia, familial, with facial myokymia, 606703 600293 109 99 96 93 ADGRG1 Polymicrogyria, bilateral frontoparietal, 606854 604110 112 100 100 99 Polymicrogyria, bilateral perisylvian, 615752
Recommended publications
  • Chapter 7: Monogenic Forms of Diabetes
    CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis.
    [Show full text]
  • Keratosis Circumscripta Revisited: a Case Report and Review of the Literature
    CONTINUING MEDICAL EDUCATION Keratosis Circumscripta Revisited: A Case Report and Review of the Literature LCDR Eric P. Brumwell, MC, USN; LCDR Sean J. Murphy, MC, USN GOAL To understand keratosis circumscripta to better manage patients with the condition OBJECTIVES Upon completion of this activity, dermatologists and general practitioners should be able to: 1. Describe the clinical presentation of keratosis circumscripta. 2. Discuss the disorders often compared to keratosis circumscripta. 3. Identify treatment options for keratosis circumscripta. CME Test on page 378. This article has been peer reviewed and approved Einstein College of Medicine is accredited by by Michael Fisher, MD, Professor of Medicine, the ACCME to provide continuing medical edu- Albert Einstein College of Medicine. Review date: cation for physicians. April 2007. Albert Einstein College of Medicine designates This activity has been planned and imple- this educational activity for a maximum of 1 AMA mented in accordance with the Essential Areas PRA Category 1 CreditTM. Physicians should only and Policies of the Accreditation Council for claim credit commensurate with the extent of their Continuing Medical Education through the participation in the activity. joint sponsorship of Albert Einstein College of This activity has been planned and produced in Medicine and Quadrant HealthCom, Inc. Albert accordance with ACCME Essentials. Drs. Brumwell and Murphy report no conflict of interest. The authors report no discussion of off-label use. Dr. Fisher reports no conflict of interest. Keratosis circumscripta, also known as psoriasis been shown to improve, but not resolve, with kerat- circumscripta with palmoplantar keratosis, is a inolytic therapies. Some debate exists concern- rarely reported condition that manifests as well- ing the terminology used to identify this condition.
    [Show full text]
  • Prestin, a Cochlear Motor Protein, Is Defective in Non-Syndromic Hearing Loss
    Human Molecular Genetics, 2003, Vol. 12, No. 10 1155–1162 DOI: 10.1093/hmg/ddg127 Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss Xue Zhong Liu1,*, Xiao Mei Ouyang1, Xia Juan Xia2, Jing Zheng3, Arti Pandya2, Fang Li1, Li Lin Du1, Katherine O. Welch4, Christine Petit5, Richard J.H. Smith6, Bradley T. Webb2, Denise Yan1, Kathleen S. Arnos4, David Corey7, Peter Dallos3, Walter E. Nance2 and Zheng Yi Chen8 1Department of Otolaryngology, University of Miami, Miami, FL 33101, USA, 2Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0033, USA, 3Department of Communication Sciences and Disorders, Auditory Physiology Laboratory (The Hugh Knowles Center), Northwestern University, Evanston, IL, USA, 4Department of Biology, Gallaudet University, Washington, DC 20002, USA, 5Unite´ de Ge´ne´tique des De´ficits Sensoriels, CNRS URA 1968, Institut Pasteur, Paris, France, 6Department of Otolaryngology University of Iowa, Iowa City, IA 52242, USA, 7Neurobiology Department, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA and 8Department of Neurology, Massachusetts General Hospital and Neurology Department, Harvard Medical School Boston, MA 02114, USA Received January 14, 2003; Revised and Accepted March 14, 2003 Prestin, a membrane protein that is highly and almost exclusively expressed in the outer hair cells (OHCs) of the cochlea, is a motor protein which senses membrane potential and drives rapid length changes in OHCs. Surprisingly, prestin is a member of a gene family, solute carrier (SLC) family 26, that encodes anion transporters and related proteins. Of nine known human genes in this family, three (SLC26A2, SLC26A3 and SLC26A4 ) are associated with different human hereditary diseases.
    [Show full text]
  • Report of the Expert Committee on the Diagnosis and Classification Of
    COMMITTEE REPORT Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus THE EXPERT COMMITTEE ON THE DIAGNOSIS AND CLASSIFICATION OF DIABETES MELLITUS* he current classification and diagno- nosis of diabetes were warranted. The in insulin secretion, insulin action, or sis of diabetes used in the U.S. was Committee met on multiple occasions both. The chronic hyperglycemia of dia- T developed by the National Diabetes and widely circulated a draft report of betes is associated with long-term dam- Data Group (NDDG) and published in their findings and preliminary recom- age, dysfunction, and failure of various 1979 (1). The impetus for the classifica- mendations to the international diabe- organs, especially the eyes, kidneys, tion and diagnosis scheme proposed then tes community. Based on the numerous nerves, heart, and blood vessels. holds true today. That is, comments and suggestions received, in- Several pathogenic processes are in- cluding the opportunity to review unpub- volved in the development of diabetes. the growth of knowledge regarding the eti- lished data in detail, the Committee These range from autoimmune destruc- ology and pathogenesis of diabetes has led discussed and revised numerous drafts of tion of the ␤-cells of the pancreas with many individuals and groups in the diabe- a manuscript that culminated in this pub- consequent insulin deficiency to abnor- tes community to express the need for a lished document. malities that result in resistance to insulin revision of the nomenclature, diagnostic This report is divided into four sec- action. The basis of the abnormalities in criteria, and classification of diabetes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Skeletal Dysplasias
    Skeletal Dysplasias North Carolina Ultrasound Society Keisha L.B. Reddick, MD Wilmington Maternal Fetal Medicine Development of the Skeleton • 6 weeks – vertebrae • 7 weeks – skull • 8 wk – clavicle and mandible – Hyaline cartilage • Ossification – 7-12 wk – diaphysis appears – 12-16 wk metacarpals and metatarsals – 20+ wk pubis, calus, calcaneus • Visualization of epiphyseal ossification centers Epidemiology • Overall 9.1 per 1000 • Lethal 1.1 per 10,000 – Thanatophoric 1/40,000 – Osteogenesis Imperfecta 0.18 /10,000 – Campomelic 0.1 /0,000 – Achondrogenesis 0.1 /10,000 • Non-lethal – Achondroplasia 15 in 10,000 Most Common Skeletal Dysplasia • Thantophoric dysplasia 29% • Achondroplasia 15% • Osteogenesis imperfecta 14% • Achondrogenesis 9% • Campomelic dysplasia 2% Definition/Terms • Rhizomelia – proximal segment • Mezomelia –intermediate segment • Acromelia – distal segment • Micromelia – all segments • Campomelia – bowing of long bones • Preaxial – radial/thumb or tibial side • Postaxial – ulnar/little finger or fibular Long Bone Segments Counseling • Serial ultrasound • Genetic counseling • Genetic testing – Amniocentesis • Postnatal – Delivery center – Radiographs Assessment • Which segment is affected • Assessment of distal extremities • Any curvatures, fracture or clubbing noted • Are metaphyseal changes present • Hypoplastic or absent bones • Assessment of the spinal canal • Assessment of thorax. Skeletal Dysplasia Lethal Non-lethal • Thanatophoric • Achondroplasia • OI type II • OI type I, III, IV • Achondrogenesis • Hypochondroplasia
    [Show full text]
  • The Genetic Heterogeneity of Brachydactyly Type A1: Identifying the Molecular Pathways
    The genetic heterogeneity of brachydactyly type A1: Identifying the molecular pathways Lemuel Jean Racacho Thesis submitted to the Faculty of Graduate Studies and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Biochemistry Specialization in Human and Molecular Genetics Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Lemuel Jean Racacho, Ottawa, Canada, 2015 Abstract Brachydactyly type A1 (BDA1) is a rare autosomal dominant trait characterized by the shortening of the middle phalanges of digits 2-5 and of the proximal phalange of digit 1 in both hands and feet. Many of the brachymesophalangies including BDA1 have been associated with genetic perturbations along the BMP-SMAD signaling pathway. The goal of this thesis is to identify the molecular pathways that are associated with the BDA1 phenotype through the genetic assessment of BDA1-affected families. We identified four missense mutations that are clustered with other reported BDA1 mutations in the central region of the N-terminal signaling peptide of IHH. We also identified a missense mutation in GDF5 cosegregating with a semi-dominant form of BDA1. In two families we reported two novel BDA1-associated sequence variants in BMPR1B, the gene which codes for the receptor of GDF5. In 2002, we reported a BDA1 trait linked to chromosome 5p13.3 in a Canadian kindred (BDA1B; MIM %607004) but we did not discover a BDA1-causal variant in any of the protein coding genes within the 2.8 Mb critical region. To provide a higher sensitivity of detection, we performed a targeted enrichment of the BDA1B locus followed by high-throughput sequencing.
    [Show full text]
  • Pushing the Limits of Prenatal Ultrasound: a Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3Q Duplication
    reproductive medicine Case Report Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q Duplication Olivier Leroij 1, Lennart Van der Veeken 2,*, Bettina Blaumeiser 3 and Katrien Janssens 3 1 Faculty of Medicine, University of Antwerp, 2610 Wilrijk, Belgium; [email protected] 2 Department of Obstetrics and Gynaecology, University Hospital Antwerp, 2650 Edegem, Belgium 3 Department of Medical Genetics, University Hospital and University of Antwerp, 2650 Edegem, Belgium; [email protected] (B.B.); [email protected] (K.J.) * Correspondence: [email protected] Abstract: We present a case of a fetus with cranial abnormalities typical of open spina bifida but with an intact spine shown on both ultrasound and fetal MRI. Expert ultrasound examination revealed a very small tract between the spine and the skin, and a postmortem examination confirmed the diagnosis of a dorsal dermal sinus. Genetic analysis found a mosaic 3q23q27 duplication in the form of a marker chromosome. This case emphasizes that meticulous prenatal ultrasound examination has the potential to diagnose even closed subtypes of neural tube defects. Furthermore, with cerebral anomalies suggesting a spina bifida, other imaging techniques together with genetic tests and measurement of alpha-fetoprotein in the amniotic fluid should be performed. Citation: Leroij, O.; Van der Veeken, Keywords: dorsal dermal sinus; Arnold–Chiari anomaly; 3q23q27 duplication; mosaic; marker chro- L.; Blaumeiser, B.; Janssens, K. mosome Pushing the Limits of Prenatal Ultrasound: A Case of Dorsal Dermal Sinus Associated with an Overt Arnold–Chiari Malformation and a 3q 1.
    [Show full text]
  • Mal De Meleda in a Taiwanese
    S.C. Chao, F.J. Lai, M.H. Yang, et al MAL DE MELEDA IN A TAIWANESE Sheau-Chiou Chao, Feng-Jei Lai, Mei-Hui Yang, and Julia Yu-Yun Lee Abstract: Mal de Meleda (MDM) is a rare form of recessive transgressive palmoplantar erythrokeratoderma for which mutations in the ARS gene have been identified recently. The ARS gene encodes SLURP-1, a secreted epidermal neuromodulator involved in epidermal homeostasis and inhibition of tumor necrosis factor-α release. A 27-year- old Taiwanese woman who had a history of palmoplantar keratoderma since birth presented with severe erythrokeratoderma of the hands and feet in a glove-and-stocking distribution with conical tapering of the fingers, and involvement of the skin over the major joints and thighs. There were also widespread mottled hyperpigmented macules. Mutation analysis revealed a homozygous missense mutation (G86R) in exon 3 of ARS gene of this patient. Key words: ARS protein, human; Keratoderma, palmoplantar; Mutation, missense; Neuronal nicotinic acetylcholine receptor alpha7; Taiwan J Formos Med Assoc 2005;104:276-8 Keratoderma palmoplantare transgrediens or mal de that appeared soon after birth. The family reported no Meleda (MDM) is a rare autosomal recessive inflam- known consanguinity. She was the only affected member matory keratoderma, characterized by diffuse erythema in the family. On examination, the patient had marked and hyperkeratosis of the hands and feet that appears erythema and hyperkeratosis of the hands and feet soon after birth and progressively extends to the dorsal in a glove-and-stocking distribution, accompanied by aspect of the hands and feet and around the wrist malodor (Fig.).
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]