DNA Structure

Total Page:16

File Type:pdf, Size:1020Kb

DNA Structure DNA Structure By Ronald Vale A Narrative produced by The Explorer’s Guide to Biology 2 The Explorer’s Guide to Biology https://explorebiology.org/ The Structure of DNA Ronald Vale, University of California, San Francisco Ronald (Ron) Vale Ronald (Ron) Vale is a professor at the University of California, San Francisco, and an investigator with the Howard Hughes Medical Institute. Ron received his PhD in Neuroscience from Stanford University in 1985. His honors include the Lasker Award in Basic Medical Research, the Shaw Prize in Life Sciences, and the Canada Gairdner Award; he was elected to the US National Academy of Sciences and the National Academy of Medicine. Ron believes in the free dissemination of scientific knowledge throughout the world. He is the founder of iBiology, a nonprofit orga- nization that produces free videos of talks by leading scientists, and the founder and executive producer of The Explorer’s Guide to Biology. Version Date: September, 2019 3 The Structure of DNA Summary The DNA double helix, one of the most influential discoveries in the history of science, revealed how information is stored and replicated in living organisms. Francis Crick and Jim Watson did not exagger- ate when they proclaimed that they had found “the secret of life” at the Eagle Pub in 1953. The double helix has since become the foundation of modern biology and its most iconic image. However, DNA is much more than a molecule to be memorized; it is a portal for understanding science and scientific strategy. In this Narrative, we will unravel the DNA helix in our minds and go back to a time when the structure was unknown and DNA was not even known to be the molecule of heredity. What did it take to catapult DNA into the modern era? What seems obvious now was not then. The quest to understand DNA was marked by mistakes by brilliant people, insights by underdogs, clues that lay forsaken, and flashes of brilliance. The path to the double helix also reveals the complementary roles of modeling (Watson and Crick) and experimentation (Rosalind Franklin, Maurice Wilkins, and Florence Bell, an unsung heroine whose early discoveries on DNA are featured here). Springing forward to modern times, we will explore how contemporary bio-engineers use DNA as a building material to create nanoscale devices. The DNA double helix continues to be a source of enormous creativity and inspiration. Learning Overview Big Concepts Complementarity between molecules governs many interactions and reactions in biology; the chemical complementarity between bases (guanine interacting with cytosine, and adenine with thymine) holds two DNA strands together in a double helix and provides simple rules for its replication. Terms and Concepts Used Adenosine triphosphate, alpha-helix, amino acid, angstrom, antibody, atomic force microscopy, base, bacterial strain, bacteriophage, Central Dogma, chromosome, CRISPR gene editing, diploid, DNA cloning, electron microscopy, gamete, genome, gene, germ cell, haploid, hemoglobin, insulin, keratin, meiosis, messenger RNA, mutation, polynucleotide, polypeptide, polysaccharide, protein, reverse transcription, ribosome, RNA, sickle cell anemia, T cell, transcription factor, van der Waals radius, virulence, virus, white blood cell, X-ray, X-ray crystallography Terms and Concepts Explained Codon, DNA aptamer, DNA chemical structure, DNA origami, DNA polymerase, DNA primase, helicase, hydrogen bond, major and minor groove, nucleoside, nucleotide, Okazaki fragment, phosphodiester bond, purine, pyrimidine, semi-conservative replication, start and stop codon, topoisomerase 4 The Structure of DNA Introduction The model for the DNA double helix in 1953 by Jim Watson and Francis Crick marked the start of a new era of molecular genetics and personalized medicine. The model provided a surprisingly simple and clear answer to the fundamental question of how the information for life is stored and replicates. The elucidation of the DNA double helix is a marvelous story of scientific detective work. It also illustrates how the two general scientific approaches of (1) experimental data gathering and (2) model building complement one another to advance our understanding of living organisms. Part I: Journey to Discovery: The DNA Double Helix Gregor Mendel’s experiments with peas in the mid-19th century revealed that different traits are conferred by discrete heritable entities that later were called genes. By the early 20th century, evidence suggested that genes reside on chromosomes, which are fibrous nuclear elements com- posed of DNA and protein. DNA (deoyxribose nucleic acid), discovered in 1869 by Friedrich Miescher, is composed of four bases (guanine, cytosine, adenine, thymine). The bases are connected to a sugar (deoxyribose), and sugars are interconnected through phosphate linkages to form a long, unbranched chain. For much of the first half of the 20th century, the chemical agent responsible for heredity was not known. Most scientists, however, believed that genes were composed of proteins, not DNA. DNA seemed too simple (only 4 different bases) compared to proteins (20 different amino acids) to encode the complex information of life. Two important experiments, one by Avery, MacLeod, and McCarty (1944) and the other by Hershey and Chase (1952), provided compelling evidence that DNA, and not protein, is the chemical agent responsible for heredity. The first important breakthrough in understanding the structure of DNA was made in 1938 by Florence Bell, a graduate student working with William Astbury in Leeds, England. Bell found a method to align fibers of DNA and then took X-ray photographs of the fibers. Her results (14 years before the famous photograph of Rosalind Franklin) revealed that DNA has a regular structure and that the bases are stacked at regular 3.4 angstrom intervals. Another important clue was found by Edwin Chargaff who determined the ratios of the four bases in DNA. He found that guanine and cytosine are present at a 1:1 ratio, as are adenine and thy- mine. The implication of this finding was not understood at first. Several scientists were chasing after the DNA structure (structure meaning understanding how the DNA chain adopts a three-dimensional shape). Watson and Crick, two young scientists at the Cavendish Laboratory in Cambridge, England, wanted to make a model, effectively a “guess” or hypothesis of what DNA might look like based upon a minimal amount of data. Linus Pauling, a famous senior scientist at Caltech, was doing the same. Rosalind Franklin and Maurice Wilkins, 5 The Structure of DNA like Florence Bell previously, were taking X-ray photographs and trying to determine the structure using more information from their experimental work. To make a model of DNA, you need to ascertain (1) how many chains of DNA are present in the biological form of DNA, and, if more than one chain, (2) whether those chains run in the same or opposite directions, (3) whether they pack straight or twist around one another, and (4) how the chains interact. Failed models of DNA preceded the correct one. The first (unpublished) Watson and Crick model and the published Pauling model both proposed an incorrect DNA triple helix. Rosalind Franklin made a key breakthrough by preparing a pure and “biologically relevant” form of DNA (B-form DNA) and generated her famous X-ray photograph: photograph 51. When Jim Watson saw photograph 51 (a half-year after it was produced), he immediately knew that DNA was a helix, thanks to earlier theoretical work by Francis Crick. This insight triggered an intense episode of model building by Watson and Crick. Crick also found a clue in the X-ray data that revealed that DNA was composed of two strands oriented in opposite directions. It was a double helix. A key eureka moment was Watson’s realization that guanine pairs with cytosine and adenine pairs with thymine at the center of the double helix. This insight explained how the two DNA strands are held together, how the double helix can maintain a constant width regardless of its nucleotide sequence, and most importantly, how DNA can replicate. The close collaboration between Watson and Crick and their combined insights allowed their model for the DNA double helix to come together in just 1 month. The DNA double helix was a model that was supported with some but not extensive data and many scientists remained skeptical. The experiment by Meselson and Stahl in 1958 showed that DNA replicates just as Watson and Crick proposed and led to the general acceptance of the Watson–Crick model. Watson, Crick, and Wilkins won the Nobel Prize in 1962. Franklin died of cancer in 1958. Part II: Knowledge Overview: The Structure of DNA DNA (deoxyribonucleic acid) stores information that can be read out to make RNAs and ultimately proteins. DNA can be copied, allowing life to propagate. DNA can mutate, allowing biological variation. The building blocks of DNA are nucleotides, small organic compounds consisting of one of four bases attached to a sugar (deoxyribose) and a phosphate. DNA in a chromosome is a single long chain of millions of connected nucleotides. The nucleotides are connected through phosphodiester bonds, in which one phosphate is linked to the 5′ carbon of one deoyxribose and to the 3′ carbon of another deoxyribose. The asymmetry of 5′ and 3′ phos- phodiester bonds confers a polarity to the DNA chain. 6 The Structure of DNA The most common biological form of DNA is the “B-form” (see Journey to Discovery), which is a double helix in which the two chains align in opposite directions. It is a right-handed helix that repeats its twist every ~10 nucleotides. The phosphate-sugar groups constitute the backbone of the helix; the bases, which lie perpendicular to the long axis, are spaced at 3.4 angstrom intervals. The DNA double helix has two grooves: the major groove and minor groove. Proteins can bind to these grooves, most commonly, the major groove where proteins can recognize a particular sequence of bases.
Recommended publications
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • A Singing, Dancing Universe Jon Butterworth Enjoys a Celebration of Mathematics-Led Theoretical Physics
    SPRING BOOKS COMMENT under physicist and Nobel laureate William to the intensely scrutinized narrative on the discovery “may turn out to be the greatest Henry Bragg, studying small mol ecules such double helix itself, he clarifies key issues. He development in the field of molecular genet- as tartaric acid. Moving to the University points out that the infamous conflict between ics in recent years”. And, on occasion, the of Leeds, UK, in 1928, Astbury probed the Wilkins and chemist Rosalind Franklin arose scope is too broad. The tragic figure of Nikolai structure of biological fibres such as hair. His from actions of John Randall, head of the Vavilov, the great Soviet plant geneticist of the colleague Florence Bell took the first X-ray biophysics unit at King’s College London. He early twentieth century who perished in the diffraction photographs of DNA, leading to implied to Franklin that she would take over Gulag, features prominently, but I am not sure the “pile of pennies” model (W. T. Astbury Wilkins’ work on DNA, yet gave Wilkins the how relevant his research is here. Yet pulling and F. O. Bell Nature 141, 747–748; 1938). impression she would be his assistant. Wilkins such figures into the limelight is partly what Her photos, plagued by technical limitations, conceded the DNA work to Franklin, and distinguishes Williams’s book from others. were fuzzy. But in 1951, Astbury’s lab pro- PhD student Raymond Gosling became her What of those others? Franklin Portugal duced a gem, by the rarely mentioned Elwyn assistant. It was Gosling who, under Franklin’s and Jack Cohen covered much the same Beighton.
    [Show full text]
  • Science in Action
    SCIENCE IN ACTION How to follow scientists and engineers through society Bruno Latour Harvard UnlvetSHy Press Cambridge, Massachusetts 1987 INTRODUCTION Opening Pandora's Black Box Scene 1: On a cold and sunny morning in October 1985, John Whittaker entered his office in the molecular biology building of the Institut Pasteur in Paris and switched on his Eclipse MV/8000 computer. A few seconds after loading the special programs he had written, a three-dimensional picture of the DNA double helix flashed onto the screen. John, a visiting computer scientist, had been invited by the Institute to write programs that could produce three-dimensional images of the coils of DNA and relate them to the thousands of new nucleic acid sequences pouring out every year into the journals and data banks. 'Nice picture, eh?' said his boss, Pierre, who was just entering the office. 'Yes, good machine too,' answered John. Scene 2: In 1951 in the Cavendish laboratory at Cambridge, England, the X-ray pictures of crystallised deoxyribonucleic acid were not 'nice pictures' on a computer screen. The two young researchers, Jim Watson and Francis Crick1, had a hard time obtaining them from Maurice Wilkins and Rosalind Franklin in London. It was impossible yet to decide if the form of the acid was a triple or a double helix, if the phosphate bonds were at the inside or at the outside of the molecule, or indeed if it was an helix at all. It did not matter much to their boss, Sir Francis Bragg, since the two were not supposed to be working on DNA anyway, but it mattered a lot to them, especially since Linus Pauling, the famous chemist, was said to be about to uncover the structure of DNA in a few months.
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Physics Today - February 2003
    Physics Today - February 2003 Rosalind Franklin and the Double Helix Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix. by Lynne Osman Elkin - California State University, Hayward In 1962, James Watson, then at Harvard University, and Cambridge University's Francis Crick stood next to Maurice Wilkins from King's College, London, to receive the Nobel Prize in Physiology or Medicine for their "discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." Watson and Crick could not have proposed their celebrated structure for DNA as early in 1953 as they did without access to experimental results obtained by King's College scientist Rosalind Franklin. Franklin had died of cancer in 1958 at age 37, and so was ineligible to share the honor. Her conspicuous absence from the awards ceremony--the dramatic culmination of the struggle to determine the structure of DNA--probably contributed to the neglect, for several decades, of Franklin's role in the DNA story. She most likely never knew how significantly her data influenced Watson and Crick's proposal. Franklin was born 25 July 1920 to Muriel Waley Franklin and merchant banker Ellis Franklin, both members of educated and socially conscious Jewish families. They were a close immediate family, prone to lively discussion and vigorous debates at which the politically liberal, logical, and determined Rosalind excelled: She would even argue with her assertive, conservative father. Early in life, Rosalind manifested the creativity and drive characteristic of the Franklin women, and some of the Waley women, who were expected to focus their education, talents, and skills on political, educational, and charitable forms of community service.
    [Show full text]
  • Frederick Griffith and Transformation
    Balderdash Example Griffith’s Transformation Experiment Ever since Edward Jenner invented the first vaccine in 1796 scientists have been working to vaccinate the world against all known diseases. Frederick Griffith wanted to save the world from pneumonia, a disease that was killing off much of Europe during the 1920’s. He didn’t build the pneumonia vaccine, but he did accidentally discover one of the most important concepts in bacterial survivability: Griffith discovered the principle of bacterial transformation. (In other words, why bacteria can fight off antibiotics) Griffith’s Transformation Experiment In 1928, Frederick Griffith was working with mice and two strains of Streptococcus pneumoniae One strain was “rough” in appearance and non-virulent, meaning that it wasn’t strong enough to hurt it’s host One strain was “smooth” in appearance and virulent. It was deadly to anyone who contracted the strain. The smooth strain looked smooth because it lacked a special protein coat that was rough in appearance and acted as a beacon summoning the mice’s immune systems. When injected with the rough (non-virulent) strain, mice lived When injected with the smooth (virulent) strain, mice died. Both as expected. Griffith’s Transformation Experiment Next, Griffith boiled the deadly, smooth strand of bacteria to kill it. He then injected mice with the deadly but boiled strand. Once again, as expected, the mice still lived. Finally, he injected the mice with BOILED smooth strands and LIVING rough strands The smooth strands are normally deadly, but Griffith had boiled them so they were not dangerous anymore. The rough strands were never deadly even when they were alive.
    [Show full text]
  • A Brief History of Microwave Engineering
    A BRIEF HISTORY OF MICROWAVE ENGINEERING S.N. SINHA PROFESSOR DEPT. OF ELECTRONICS & COMPUTER ENGINEERING IIT ROORKEE Multiple Name Symbol Multiple Name Symbol 100 hertz Hz 101 decahertz daHz 10–1 decihertz dHz 102 hectohertz hHz 10–2 centihertz cHz 103 kilohertz kHz 10–3 millihertz mHz 106 megahertz MHz 10–6 microhertz µHz 109 gigahertz GHz 10–9 nanohertz nHz 1012 terahertz THz 10–12 picohertz pHz 1015 petahertz PHz 10–15 femtohertz fHz 1018 exahertz EHz 10–18 attohertz aHz 1021 zettahertz ZHz 10–21 zeptohertz zHz 1024 yottahertz YHz 10–24 yoctohertz yHz • John Napier, born in 1550 • Developed the theory of John Napier logarithms, in order to eliminate the frustration of hand calculations of division, multiplication, squares, etc. • We use logarithms every day in microwaves when we refer to the decibel • The Neper, a unitless quantity for dealing with ratios, is named after John Napier Laurent Cassegrain • Not much is known about Laurent Cassegrain, a Catholic Priest in Chartre, France, who in 1672 reportedly submitted a manuscript on a new type of reflecting telescope that bears his name. • The Cassegrain antenna is an an adaptation of the telescope • Hans Christian Oersted, one of the leading scientists of the Hans Christian Oersted nineteenth century, played a crucial role in understanding electromagnetism • He showed that electricity and magnetism were related phenomena, a finding that laid the foundation for the theory of electromagnetism and for the research that later created such technologies as radio, television and fiber optics • The unit of magnetic field strength was named the Oersted in his honor.
    [Show full text]
  • Reflections on the Historiography of Molecular Biology
    Reflections on the Historiography of Molecular Biology HORACE FREELAND JUDSON SURELY the time has come to stop applying the word revolution to the rise of new scientific research programmes. Our century has seen many upheavals in scientific ideas--so many and so varied that the notion of scientific revolution has been stretched out of shape and can no longer be made to cover the processes of change characteristic of most sciences these past hundred years. By general consent, two great research pro- grammes arising in this century stand om from the others. The first, of course, was the one in physics that began at the turn of the century with quantum theory and relativity and ran through the working out, by about 1930, of quantum mechanics in its relativistic form. The trans- formation in physics appears to be thoroughly documented. Memoirs and biographies of the physicists have been written. Interviewswith survivors have been recorded and transcribed. The history has been told at every level of detail and difficulty. The second great programme is the one in biology that had its origins in the mid-1930s and that by 1970 had reached, if not a conclusion, a kind of cadence--a pause to regroup. This is the transformation that created molecular biology and latter-day biochemistry. The writing of its history has only recently started and is beset with problems. Accounting for the rise of molecular biology began with brief, partial, fugitive essays by participants. Biographies have been written of two, of the less understood figures in the science, who died even as the field was ripening, Oswald Avery and Rosalind Franklin; other scientists have wri:tten their memoirs.
    [Show full text]
  • Photograph 51, by Rosalind Franklin (1952) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Photograph 51, by Rosalind Franklin (1952) [1] By: Hernandez, Victoria Keywords: X-ray crystallography [2] DNA [3] DNA Helix [4] On 6 May 1952, at King´s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA´s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes [5]. Maurice Wilkins, Franklin´s colleague showed James Watson [6] and Francis Crick [7] Photo 51 without Franklin´s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin´s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine [8] for their findings about DNA. Franklin´s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA´s role in heredity. X-ray crystallography, the technique Franklin used to produce Photo 51 of DNA, is a method scientists use to determine the three-dimensional structure of a crystal. Crystals are solids with regular, repeating units of atoms. Some biological macromolecules, such as DNA, can form fibers suitable for analysis using X-ray crystallography because their solid forms consist of atoms arranged in a regular pattern. Photo 51 used DNA fibers, DNA crystals first produced in the 1970s. To perform an X-ray crystallography, scientists mount a purified fiber or crystal in an X-ray tube.
    [Show full text]
  • Lesson Overview to Answer That Question, the First Thing You Need to 12.1 Identifying the Know Is What Genes Are Made Of
    THINK ABOUT IT How do genes work? Lesson Overview To answer that question, the first thing you need to 12.1 Identifying the know is what genes are made of. Substance of Genes How would you go about figuring out what molecule or molecules go into making a gene? Griffith’s Experiments Bacterial Transformation Griffith isolated two different strains of the same bacterial The discovery of the chemical nature of the gene began in 1928 species. with British scientist Frederick Griffith, who was trying to figure Both strains grew very well in culture plates in Griffith’s lab, but out how certain types of bacteria produce pneumonia. only one of the strains caused pneumonia. The disease-causing bacteria (S strain) grew into smooth colonies on culture plates, whereas the harmless bacteria (R strain) produced colonies with rough edges. Griffith’s Experiments Griffith’s Experiments When Griffith injected mice with disease-causing bacteria, First, Griffith took a culture of the S strain, heated the cells the mice developed pneumonia and died. to kill them, and then injected the heat-killed bacteria into When he injected mice with harmless bacteria, the mice laboratory mice. stayed healthy. The mice survived, suggesting that the cause of pneumonia Perhaps the S-strain bacteria produced a toxin that made was not a toxin from these disease-causing bacteria. the mice sick? To find out, Griffith ran a series of experiments. Griffith’s Experiments Griffith’s Experiments In Griffith’s next experiment, he mixed the heat-killed, The lungs of these mice were filled with the disease-causing S-strain bacteria with live, harmless bacteria from the R bacteria.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]