Information to Users
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges. -
Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids. -
Campanulaceae) Based on ITS and Tranl-F Sequence Data: Implications for a Reclassification
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of the Western Cape Research Repository Cupido, C. N. et al. (2013). Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and tranL-F sequence data: implications for a reclassification. Systematic Botany, 38(2): 523 – 535 http:// doi.org/10.1600/036364413X666714 dx. Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and trnL-F sequence data: implications for a reclassification Christopher N. Cupido , Jessica M. Prebble , and William M. M. Eddie Abstract The Campanulaceae: Wahlenbergioideae currently comprises 15 genera, one of which, Wahlenbergia, is widespread over the southern continents. Southern Africa is the region with maximum wahlenbergioid diversity with 12 genera and approximately 252 species. A second center is Australasia with 38 Wahlenbergia species. This study used a broad sample of wahlenbergioid diversity from South Africa, Australia, and New Zealand to reconstruct a phylogeny based on chloroplast trnL-F and nuclear ITS sequences. Data were analyzed separately and in combination using parsimony and Bayesian methods. The results suggest that for the wahlenbergioids to be monophyletic Wahlenbergia hederacea has to be excluded and that none of the South African, Australian or New Zealand lineages are strictly monophyletic. There are five species assemblages that are in some disagreement with current classification in the family. Wahlenbergia, Prismatocarpus and Roella are shown to be non-monophyletic and implications for a reclassification are presented. Careful consideration of morphological characters is suggested before the adjustment of generic circumscriptions can be accomplished. Recent family-wide molecular phylogenetic studies have supported the view that the Campanulaceae s.s. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Guidelines for Determining Significance and Report Format and Content Requirements
COUNTY OF SAN DIEGO GUIDELINES FOR DETERMINING SIGNIFICANCE AND REPORT FORMAT AND CONTENT REQUIREMENTS BIOLOGICAL RESOURCES LAND USE AND ENVIRONMENT GROUP Department of Planning and Land Use Department of Public Works Fourth Revision September 15, 2010 APPROVAL I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and were considered by the Director of Planning and Land Use, in coordination with the Director of Public Works on September 15, 2O1O. ERIC GIBSON Director of Planning and Land Use SNYDER I hereby certify that these Guidelines for Determining Significance for Biological Resources, Report Format and Content Requirements for Biological Resources, and Report Format and Content Requirements for Resource Management Plans are a part of the County of San Diego, Land Use and Environment Group's Guidelines for Determining Significance and Technical Report Format and Content Requirements and have hereby been approved by the Deputy Chief Administrative Officer (DCAO) of the Land Use and Environment Group on the fifteenth day of September, 2010. The Director of Planning and Land Use is authorized to approve revisions to these Guidelines for Determining Significance for Biological Resources and Report Format and Content Requirements for Biological Resources and Resource Management Plans except any revisions to the Guidelines for Determining Significance presented in Section 4.0 must be approved by the Deputy CAO. -
Dendroseris Pinnata (Bertero Ex Decne.) Col De Juan Fernández Hook
Id especie: FICHA DE ESPECIE CLASIFICADA Nombre Científico Nombre Vernacular Dendroseris pinnata (Bertero ex Decne.) Col de Juan Fernández Hook. et Arn. En: Hook. et Arn. Comp. Bot. Mag. I. 32. 1835. Familia: Asteraceae tribu: Cichorieae (Muñoz 1973) subtribu: Sonchinae (Kim et al. 1996) subgénero: Phoenicoseris (Sanders et al. 1987) Sinonimia Rea pinnata Bert. en Hemsley (1884) Antecedentes Generales Especie perteneciente al género endémico Dendroseris. Endemismo de la isla Robinson Crusoe. Compuesta de porte arbóreo de hasta 3 m de altura, de aspecto de una pequeña palma. Monocárpico, con el tronco delgado, oblicuo u horizontal en su base, resto levantado y derecho, marcado por cicatrices foliares. Hojas reunidas a modo de plumero en la punta del tronco, peciolada, imparipinnada (con 9 a 16 pares de pinas, sésiles). Inflorescencia es una panoja lateral saliendo de la base del ramillete de hojas, compuesta, formada por 300 a 400 cabezuelas. Corola blanca, vilano blanco. Aquenios morenos, oblongos, comprimidos (Johow 1896). Especie monocárpica, es decir, produce flores a edad avanzada, reproduciéndose con abundancia y muriendo después (Johow 1896). Esta especie presenta alguna variabilidad genética (Crawford et al. 1998, Esselman et al. 2000), y se ha estudiado los mecanismos evolutivos del género (Crawford et al. 1992) La germinación comienza a los 30 días después de sembradas las semillas, llegando a solo un 2% al cabo de 6 meses (Ricci 1998) Distribución geográfica (extensión de la presencia) Desde Quebrada Piedra Agujereada hasta Cerro Chumacera; Cordón Salsipuedes; desde Puerto Inglés a Vaquería y Juanango y en Cerro Alto (Johow 1896; Skottsberg 1922, 1952; Ricci obs.). Se estima una extensión de la presencia aproximada, menor a 5 km2 Tamaño poblacional estimado, abundancia relativa y estructura poblacional Se contaron 96 individuos (Ricci 1990, 2005) en los distintos sectores de la isla, en todas las clases de tamaño, siempre individuos aislados, se infiere menos de 50% de individuos maduros. -
OCR Document
Abelmoschus-Allium 1 Abelmoschus manihot white-yellow to 2m 110 69 Agastache pallidiflora ssp neomexicana lavender-pink 2 Abies koreana yellow dwarf 50 x 20cm 161 45-75cm 258 3 Acaena myriophylla greenish 15-25cm 106 70 rugosa rose/violet to 120cm 253 4 sericea purple fls/silver lvs 6-25cm 62 242 71 rugosa 'Golden Jubilee' blue-purple/chartreuse lvs 100cm 236 5 Acantholimon araxanum pink 15-20cm 243 72 rugosa 'Honey Bee Blue' blue 60-90cm 130 6 armenum pink/white 10-20cm 233 73 rugosa 'Liquorice Blue' deep blue 60-75cm 130 7 capitatum pink 4-18cm 242 74 rupestris pink-orange 60cm 205 8 halophilum light pink 5-10cm 233 75 rupestris 'Apache Sunset' dp orange/rose purple 45-60cm 149 9 hohenackeri pink 5-10cm 243 76 Ageratum houstonianum white 30-80cm 227 10 kotschyi pink 5-10cm 67 77 Agoseris glauca yellow 5-60cm 67 11 litvinovii pale pink 5-15cm 242 78 grandiflora yellow 25-60cm 227 12 saxifragiforme deep pink 5-10cm 6 79 Agrimonia pilosa v pilosa yellow 30-120cm 256 13 sp white 5cm 6 80 Akebia quinata 'Variegata' cream marbled lvs to 12m 259 14 sp ex Ala Dag pink 5cm 6 81 Albuca humilis white/green 15cm 140 15 venustum pink 10-15cm 233 82 shawii yellow 30-45cm > 16 Acanthus hungaricus pink/mauve to 1.5m 56 83 sp ex JCA 15856 white/green 15cm 105 17 Acer griseum to 12m 229 84 Alcea rosea mix 2-3m 34 18 palmatum 'Sango-kaku' 6-7.5m 198 85 rosea pink 2-3m 238 19 palmatum v dissectum 'Crimson Queen' to 3m 149 86 rosea 'Nigra' dark maroon 1.5-2m 34 20 Achillea clavennae white to 25cm 51 87 rosea spp ficifolia yellow/orange to 2.25m 34 21 millefolium -
TCAP Coordinator, TPWD
TEXAS CONSERVATION ACTION PLAN East Central Texas Plains (Post Oak Savanna) DRAFT ECOREGION HANDBOOK JUNE 2011 Note: text in red in this document will be revised between June 10 Public Comment Draft and the final USFWS-approved document. THIS IS A SUMMARY of the HANDBOOK; more background information will be added. In accordance with Texas State Depository Law, this publication is available at the Texas State Publications Clearinghouse and/or Texas Depository Libraries. © Texas Parks and Wildlife Department PWD insert number when approved Citing this document: Texas Parks and Wildlife Department. 2011. Texas Conservation Action Plan 2011 – 2016: East Central Texas Plains Handbook. Editor, Wendy Connally, Texas Conservation Action Plan Coordinator. PWD insert number when approved. Austin, Texas. Contents SUMMARY ..................................................................................................................................................... 1 HOW TO GET INVOLVED ............................................................................................................................... 2 OVERVIEW ..................................................................................................................................................... 3 RARE SPECIES and COMMUNITIES .............................................................................................................. 12 PRIORITY HABITATS .................................................................................................................................... -
Classification of Convolvulaceae: a Phylogenetic Approach
Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain. -
SAN DIEGO COUNTY NATIVE PLANTS in the 1830S
SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s The Collections of Thomas Coulter, Thomas Nuttall, and H.M.S. Sulphur with George Barclay and Richard Hinds James Lightner San Diego Flora San Diego, California 2013 SAN DIEGO COUNTY NATIVE PLANTS IN THE 1830s Preface The Collections of Thomas Coulter, Thomas Nuttall, and Our knowledge of the natural environment of the San Diego region H.M.S. Sulphur with George Barclay and Richard Hinds in the first half of the 19th century is understandably vague. Referenc- es in historical sources are limited and anecdotal. As prosperity peaked Copyright © 2013 James Lightner around 1830, probably no more than 200 inhabitants in the region could read and write. At most one or two were trained in natural sciences or All rights reserved medicine. The best insights we have into the landscape come from nar- No part of this document may be reproduced or transmitted in any form ratives of travelers and the periodic reports of the missions’ lands. They without permission in writing from the publisher. provide some idea of the extent of agriculture and the general vegeta- tion covering surrounding land. ISBN: 978-0-9749981-4-5 The stories of the visits of United Kingdom naturalists who came in Library of Congress Control Number: 2013907489 the 1830s illuminate the subject. They were educated men who came to the territory intentionally to examine the flora. They took notes and col- Cover photograph: lected specimens as botanists do today. Reviewing their contributions Matilija Poppy (Romneya trichocalyx), Barrett Lake, San Diego County now, we can imagine what they saw as they discovered plants we know. -
Vascular Flora of Gus Engeling Wildlife Management Area, Anderson County, Texas
2003SOUTHEASTERN NATURALIST 2(3):347–368 THE VASCULAR FLORA OF GUS ENGELING WILDLIFE MANAGEMENT AREA, ANDERSON COUNTY, TEXAS 1 2,3 2 JASON R. SINGHURST , JAMES C. CATHY , DALE PROCHASKA , 2 4 5 HAYDEN HAUCKE , GLENN C. KROH , AND WALTER C. HOLMES ABSTRACT - Field studies in the Gus Engeling Wildlife Management Area, which consists of approximately 4465.5 ha (11,034.1 acres) of the Post Oak Savannah of Anderson County, have resulted in an annotated checklist of the vascular flora corroborating its remarkable species richness. A total of 930 taxa (excluding family names), belonging to 485 genera and 145 families are re- corded. Asteraceae (124 species), Poaceae (114 species), Fabaceae (67 species), and Cyperaceae (61 species) represented the largest families. Six Texas endemic taxa occur on the site: Brazoria truncata var. pulcherrima (B. pulcherrima), Hymenopappus carrizoanus, Palafoxia reverchonii, Rhododon ciliatus, Trades- cantia humilis, and T. subacaulis. Within Texas, Zigadenus densus is known only from the study area. The area also has a large number of species that are endemic to the West Gulf Coastal Plain and Carrizo Sands phytogeographic distribution patterns. Eleven vegetation alliances occur on the property, with the most notable being sand post oak-bluejack oak, white oak-southern red oak-post oak, and beakrush-pitcher plant alliances. INTRODUCTION The Post Oak Savannah (Gould 1962) comprises about 4,000,000 ha of gently rolling to hilly lands that lie immediately west of the Pineywoods (Timber belt). Some (Allred and Mitchell 1955, Dyksterhuis 1948) consider the vegetation of the area as part of the deciduous forest; i.e., burned out forest that is presently regenerating.