GROWTH DETERMINATION of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA

Total Page:16

File Type:pdf, Size:1020Kb

GROWTH DETERMINATION of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, ebruary 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 G OWT( DETE MINATION O, T OPI.AL LIMPET Cellana testudinaria (Linnaeus, 1758) LI/ING ON T(E O.01 S(O E O, O(OIWAIT, SO2T(EAST MOL2..AS, INDONESIA Abraham S Khow*) Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon 9712 Indonesia Received : June, 21, 2006 ; Accepted : ecember, 12 , 2006 ABSTRACT Monthly shell-length fre(uency distributions were used to analyse the si)e and age structure of the limpet population inhabiting the rocky shore of Ohoiwait, Southeast Moluccas. The lengths of the collected specimens ranged from ..0 to 31.. mm. The analysis of the successive fre(uency distributions suggested that the population consisted of 0 to 1 distinct age groups 2cohorts) at any given time, and that two new cohorts recruited during the one-year investigation period. An analysis to determine growth pattern using 3iSAT software showed that the longevity of C. testudinaria e5tended up to 2 years. The values of von 6ertalanffy growth parameters 27, K and t0), estimated from si)e-fre(uency distributions, were 33.1 mm, 1.0 yr-1, and 0.08, respectively. The highest growth increments were 219 and 1.9 of the asymptotic length during the first 3 and 6 months, respectively. The effects of environmental variables on the growth rates showed important seasonal variations, with the highest increment of 2.6 mm/month during dry season. Here, growth parameter of C. testudinaria limpet shows the same value as other tropical limpets and depends on environmental variables. Key Words: Shell-length frequency distributions, Growth determination, Cellana testudinaria. () Correspondence: Phone *62-81 , 0,,29., E-mail0 as1houw2web.de INTRODUCTION The tropical limpet C. testudinaria is A burst of theoretical contributions reasonably well 1nown from systematic and regarding estimation of growth parameters geographical distribution aspects 56ilson, from growth data 5Lotze, 19987 Khouw, 199 7 Attrill et al., 2001), but there are little 2002) has led to the clarification of the published studies regarding its growth or concept of the effects of environmental other aspects of its biology. Many variables on the growth of limpets 56illiam investigations about growth rates of various 8 Morritt, 199.7 Liu 8 Morton, 1998). Patellacea have been carried out focusing on Iwasa1i 51998) examined growth rates of several factors affecting growth, such as some tropical gastropods in an attempt to tidal height 5Ta1ada, 19977 6illiams et al., determine whether life spans were under 1999), water temperature 56illiam 8 primary temperature control as suggested by Morritt, 199.7 Saad, 1997), seasonal changes and food availability 59r:thes et al., 199,7 Ruiz Sebasti=n et al., 2002). Growth Determination Of Tropical Limpet Cellana testudinaria (Linnaeus, 1758) Living On The ocky Shore Of Ohoiwait, Southeast Moluccas, Indonesia 89 Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, ebruary 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 Levins 51968) or whether some other Therefore, this research would present features of the milieu of these animals information on the growth rates of C. determined their longevity. In a review of testudinarai and some factors presumably the physiological variation among intertidal affecting them. Moreover, the results are molluscs, Aunmore 8 Schiel 52000) compared it with those of similar limpets concluded that on the whole southern from temperate regions. hemispheres, species have shorter life span and attain smaller final size than northern ones. The evidence from the north Atlantic ATERIALS AND ETHODS and Pacific coasts of North America M M indicated that this generalization also holds Study site within species with broad latitudinal distribution 5Aunmore 8 Schiel, 2000). These findings imply that differences of The study was carried out monthly on the intertidal roc1y shore of Ohoiwait growth parameters between limpets in 0 0 different regions can be explained either by 5latitude . ,.E1.F S, longitude 1 2 .7E20F a single primary environmental effect or E), 9ig Kai Island, Southeast Mollucas, may result from a combination of interaction Indonesia Fig. 1) from October 2001 to September 2002. The intertidal region between environmental and other factors. 2 C. testudinaria is an excellent investigated is about 0.2. 1m 51 1m long species to study growth, as they are present and 0.2. 1m wide). Thus, it is small enough in high numbers, range freely on all roc1y that atmospheric conditions may be substrata, and the shells of these animals assumed, for most purposes, to be uniform show distinct dimensions, suggesting a over the whole area. The shore consisted of possibility for determining growth. The shingles, pebbles, medium and big boulders notion that environmental stress is generally of about 90G of covering substrate. The an important factor which directly or physical conditions in the tidal zones are indirectly influences the population quite different7 the higher shore is wetted dynamics of common intertidal animals almost exclusively by tidal sea level rise, but 5Lohse, 199 7 Aelany et al., 19987 9rey, the lower shore receives considerable wave 200 7 Clar1e et. al., 200,) has led this study action. to further examine the same hypothesis. Growth Determination Of Tropical Limpet Cellana testudinaria (Linnaeus, 1758) Living On The ocky Shore Of Ohoiwait, Southeast Moluccas, Indonesia 90 Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, ebruary 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 N 5°18' * Banda Sea 5°26' 5°34' 5°46' Ohoiwait 5°54' Arafura Sea S 132°34' 132°42' 132°50' 132°58' E Fig 1. Map of study site of Ohoiwait located at the 9ig Kai Island. Growth measurements mean sizes of cohorts were followed through time. The population of C. testudinaria was sampled periodically and the mean size Analyses of the individuals within distinct age cohorts was calculated from polymodal size- Population structure. The frequency distributions 5Tablado et. al., population structure of C. testudinaria was 199,7 Turon et al., 199.7 Murray, 2002). analysed using the Modal class Progression Age classes were defined through analysis Analysis, MPA 5Gayanillo et al., 1996) by of length frequency distributions to the aid of FiSAT software 5Sparre 8 decompose monthly size-frequency into Henema, 1998). This methodology infers their component normal curves 59r:thes et growth from the apparent shift of the modes al., 199,). The estimate of growth used the or means in a time series of length frequency monthly size of frequency data, whereby the samples. It was then applied to the Growth Determination Of Tropical Limpet Cellana testudinaria (Linnaeus, 1758) Living On The ocky Shore Of Ohoiwait, Southeast Moluccas, Indonesia 91 Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, ebruary 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 frequency histograms of the limpetsE shell 9artlettEs test 5So1al 8 Rohlf, 199.) was lengths to divide them into distinctive used to chec1 the assumption of cohorts. homogeneity of the residual variances Growth. The growth of limpets was before using ANCOHA. analysed by using the most widely used being that developed by von 9ertalanffy 519 8) that has been 1nown as the RESULTS AND DISCUSSION - K 5t > to) 9ertalanffy equation0 7t I 7 [1 J e ] where 7t is the length at age t, 7 is the ,opulation structure asymptotic length 5representing the maximum theoretical length of animal), K The size structure of the population the growth coefficient 5describing the rate of of C. testudinaria was examined through the growth of the animal to its maximum size), analysis of percentage size frequency and to the theoretical age at length 0 5the distribution Fig. 2). The overall specimen start of growth of the settled larva)7 the sizes ranged from 8.0 to 1.8 mm, intercept between the curve and the t axis. representing 6 cohorts. The first cohort Statistical analysis. Seasonal consists of juvenile limpets with an average variation in the growth of cohorts was length of L 10.. mm, representing 1 G of assumed to be negligible in the present the total population. The second cohort study, because growth rates calculated at encompasses the limpets with lengths of different times could confound an analysis 10.. J 1... mm, accounting for ,8 G of the of seasonal variability. As a consequence, I total population. This sub-population proceeded with the comparison of regression generally presents the group of limpets with lines resulting from the relationships the highest growth rates. The remaining between shell length and the number of cohorts consist of limpets with an average months, using an analysis of covariance length of 1... J 20.. mm, 20.. J 2... mm, ANCOHA 5So1al 8 Rohlf, 199.). This test 2... J 0.. mm, and M 0.. mm, accounting determines the level of similarity between for 22 G, 9 G, 7 G, and 1 G of the total the samples, and, in case of heterogeneous population, respectively. relationships, obtained the nature of the source of the differences 59axter, 198 ). 20 18 16 14 12 10 8 6 4 PercentageFrequency (%) 2 0 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 19,5 20,5 21,5 22,5 23,5 24,5 25,5 26,5 27,5 28,5 29,5 30,5 31,5 Mean length (mm) Fig 2. Cellana testudinaria. Mean percentage frequency of each size class category. Hertical lines represent standard deviation 5SA). Growth Determination Of Tropical Limpet Cellana testudinaria (Linnaeus, 1758) Living On The ocky Shore Of Ohoiwait, Southeast Moluccas, Indonesia 92 Journal of Coastal Development ISSN : 1410 - 5217 Volume 10, Number 2, ebruary 2007 : 89 - 103 Accredited : 23a / Dikti/Kep/ 2004 Growth 8.
Recommended publications
  • An Analysis of the Community Composition of the Xiphophora Gladiata Dominated Subzone of the Tasmanian Sublittoral Fringe
    Papers and Proceedings ol the Royal Society of Tasmania, Volume 123, 1989 191 AN ANALYSIS OF THE COMMUNITY COMPOSITION OF THE XIPHOPHORA GLADIATA DOMINATED SUBZONE OF THE TASMANIAN SUBLITTORAL FRINGE by E. L. Rice (with five tables and nine text-figures) RICE, E.L., 1989 (31:x): An analysis of the community composition of the Xiphophora iladiata dominated subzone of the Tasmanian sublittoral fringe. Pap. Proc. R. Soc. Tasm. 123: I 91-209. https://doi.org/10.26749/rstpp.123.191 ISSN 0080-4703. Biological Sciences Branch, Department of Fisheries and Oceans, Halifax Research Laboratory, PO Box 550, Halifax, Nova Scotia B3J 2S7, Canada; formerly Department of Botany, University of Tasmania The rocky shore sublittoral fringe of the oceanic coasts of Tasmania contains a subzone dominated by the large brown alga Xiphophora iladiata. The community composition of this subzone is here examined at fourteen sites. The phytal and fauna! assemblages are analysed by principal co-ordinate, classification and nodal analyses. This subzone is found to have a high species richness. including species which had been thought to occupy only higher or lower tidal levels. It is suggested that both plant and animal assemblages are strongly influenced by wave exposure, freshwater run-off and geography. Key Words: marine community composition, sublittoral fringe, Xiphophora, multivariate analyses. INTRODUCTION (Bennett & Pope 1960). Thus, on the oceanic coasts of Tasmania it is possible to define a Xiphophora The rocky shores of southeastern Australia are subzone, dominated by X. g/adiata, which marks known to be occupied primarily by barnacles and the highest limit of the sublittoral fringe on very molluscs in the upper intertidal (Underwood 1981), exposed shores and represents the upper sublittoral while algae dominate at midshore level and below.
    [Show full text]
  • BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine
    BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine Biology School of Marine Sciences University of Maine (Orono) and Director, Darling Marine Center Walpole, ME 04573 Education: B.Sc. Marine Science, California State University, Long Beach, 1967 M.S. Marine Science, California State University, Long Beach, 1969 Ph.D. Marine Zoology, Northeastern University, 1974 Professional Experience: Director, Darling Marine Center, The University of Maine, 1991- Prof. of Marine Biology, School of Marine Sciences, Univ. of Maine, Orono 1991- Director, Division of Marine Sciences, Harbor Branch Oceanographic Inst. (HBOI), Ft. Pierce, Florida, 1985-1987; 1990-91 Senior Scientist (1981-90), Associate Scientist (1979-81), Assistant Scientist (1973- 79), Harbor Branch Oceanographic Inst. Director, Postdoctoral Fellowship Program, Harbor Branch Oceanographic Inst., 1982-89 Currently Member of Editorial Boards of: Invertebrate Biology Journal of Experimental Marine Biology & Ecology Invertebrate Reproduction & Development For the past 30 years, much of his research has concentrated on the reproductive ecology of deep-sea invertebrates inhabiting Pacific hydrothermal vents, the Bahamas Islands, and methane seeps in the Gulf of Mexico. The research has been funded largely by NSF (Biological Oceanography Program) and NOAA and involved the use of research vessels, manned submersibles, and ROV’s. Some Recent Publications: Eckelbarger, K.J & N. W. Riser. 2013. Derived sperm morphology in the interstitial sea cucumber Rhabdomolgus ruber with observations on oogenesis and spawning behavior. Invertebrate Biology. 132: 270-281. Hodgson, A.N., K.J. Eckelbarger, V. Hodgson, and C.M. Young. 2013. Spermatozoon structure of Acesta oophaga (Limidae), a cold-seep bivalve. Invertertebrate Reproduction & Development. 57: 70-73. Hodgson, A.N., V.
    [Show full text]
  • Ministério Da Educação Universidade Federal Rural Da Amazônia
    MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Graduação em Engenharia de Pesca da Universidade Federal Rural da Amazônia (UFRA) como requisito necessário para obtenção do grau de Bacharel em Engenharia de Pesca. Área de concentração: Ecologia Aquática. Orientador: Prof. Dr. rer. nat. Marko Herrmann. Coorientadora: Dra. Maria Carla de Aranzamendi. BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso apresentado à Universidade Federal Rural da Amazônia, como parte das exigências do Curso de Graduação em Engenharia de Pesca, para a obtenção do título de bacharel. Área de concentração: Ecologia Aquática. ______________________________________ Data da aprovação Banca examinadora __________________________________________ Presidente da banca Prof. Dr. Breno Gustavo Bezerra Costa Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 1 Prof. Dr. Lauro Satoru Itó Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 2 Profa. Msc. Rosália Furtado Cutrim Souza Universidade Federal Rural da Amazônia - UFRA Aos meus sobrinhos, Tháina, Kauã e Laura. “Cabe a nós criarmos crianças que não tenham preconceitos, crianças capazes de ser solidárias e capazes de sentir compaixão! Cabe a nós sermos exemplos”. AGRADECIMENTOS Certamente algumas páginas não irão descrever os meus sinceros agradecimentos a todos aqueles que cooperaram de alguma forma, para que eu pudesse realizar este sonho.
    [Show full text]
  • ECOLOGICAL ENERGETICS of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
    Journal of Coastal Deveolpment ISSN : 1410-5217 Volume 11, Number 2, February 2008 : 89-96 ECOLOGICAL ENERGETICS OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon Indonesia Received : November, 2, 2007 ; Accepted :January,4, 2008 ABSTRACT Study on ecological energetics of tropical limpet C. testudinaria has been carried out at approximately one year from October 2001 to September 2002. Population energy budgets estimated on the assumption of steady state conditions for C. testudinaria (Linnaeus, 1758) on the rocky shore of Ohoiwait, are presented. Large difference in population structure, and hence energetics, occurred at different localities along the rocky shore. Relatively high proportions (98 %) of the assimilated energy was lost via metabolism. Assimilation efficiency is 39 %, net growth efficiency is 1.8 %, and ecological efficiency 0.3 %. Production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy component for which data on size frequency and density are available. Key words: ecological energetics, cellana testudinaria, energy components Correspondence: Phone : +6281343044295, e-mail: [email protected] INTRODUCTION Cellana testudinaria is intertidal, grazing Little has been published on the gastropod abundant on medium to very ecology of C. testudinaria. Khouw (2002) exposed rocky shores of Ohoiwait. The discussed their growth pattern and shell species shows marked zonation, with only a shape variation in relation to zonal little overlap between zones. C. testudinaria distribution. Distribution, abundance, and occurs at several spatial and temporal scales biomass were investigated by Khouw from the extreme low water spring tide (2006a) and presented evidence for the (ELWST) to the extreme high water spring effects of drying.
    [Show full text]
  • Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
    Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Adelaide Desalination Plant Intertidal Monitoring Summer 2012
    Adelaide Desalination Plant Intertidal Monitoring Summer 2012 June 2012 Stewart T.D.C. & Dittmann S.* School of Biological Sciences, Flinders University *Author for correspondence e-mail: [email protected] This report can be cited as: Stewart T.D.C. & Dittmann, S. (2012) Adelaide Desalination Plant Intertidal Monitoring Summer 2012, Flinders University, Adelaide Table of Contents 1. Executive Summary ............................................................................................. ii 2. Introduction .......................................................................................................... 1 2.1 Rocky Shores and the Gulf St. Vincent ................................................................................... 1 2.2 Potential desalination effects on marine rocky-shore flora and fauna..................................... 1 2.3 Use of rocky shore flora and fauna as indicators of human impacts....................................... 1 2.4 Design of environmental monitoring studies ........................................................................... 3 2.5 Study rational and scope ......................................................................................................... 3 2.6 Study aims and design ............................................................................................................ 4 3. Methods ............................................................................................................... 5 3.1 Sampling locations, sites and dates .......................................................................................
    [Show full text]
  • Habitat Preference and Population Ecology of Limpets Cellana
    Hindawi Publishing Corporation Journal of Ecosystems Volume 2014, Article ID 874013, 6 pages http://dx.doi.org/10.1155/2014/874013 Research Article Habitat Preference and Population Ecology of Limpets Cellana karachiensis (Winckworth) and Siphonaria siphonaria (Sowerby) at Veraval Coast of Kathiawar Peninsula, India Julee Faladu, Bhavik Vakani, Paresh Poriya, and Rahul Kundu Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005, India Correspondence should be addressed to Rahul Kundu; [email protected] Received 7 May 2014; Revised 6 July 2014; Accepted 20 July 2014; Published 17 August 2014 Academic Editor: Wen-Cheng Liu Copyright © 2014 Julee Faladu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Present study reports the habitat preference and spatiotemporal variations in the population abundance of limpets Cellana karachiensis and Siphonaria siphonaria inhabiting rocky intertidal zones of Veraval coast, Kathiawar Peninsula, India. The entire intertidal zone of the Veraval coast was divided into five microsampling sites based on their substratum type and assemblage structure. Extensive field surveys were conducted every month in these microsampling sites and the population abundance of two limpet species was analyzed using belt transect method. The results revealed that C. karachiensis was the dominating species at microsampling Site-1 (having rocky substratum) possibly due to its ability to tolerate high desiccation, salinity, and temperature fluctuations, while the S. siphonaria was found to be the most dominating species at microsampling Site-2 (having rocky substratum with abundant algal population) possibly due to their preference for the perpetual wet areas.
    [Show full text]
  • The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Engineering, Science and Mathematics National Oceanography Centre, Southampton School of Ocean and Earth Sciences The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets. William J F Le Quesne Thesis for the degree of Doctor of Philosophy July 2005 Graduate School of the National Oceanography Centre, Southampton This PhD dissertation by William J F Le Quesne has been produced under the supervision of the following persons: Supervisors: Prof. John G. Shepherd Prof Stephen Hawkins Chair of Advisory Panel: Dr Lawrence E. Hawkins Member of Advisory Panel: Dr John A. Williams University
    [Show full text]
  • Silica Biomineralization in the Radula of a Limpet
    Zoological Studies 46(4): 379-388 (2007) Silica Biomineralization in the Radula of a Limpet Notoacmea schrenckii (Gastropoda: Acmaeidae) Tzu-En Hua and Chia-Wei Li* Institute of Molecular and Cellular Biology, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan (Accepted November 6, 2006) Tzu-En Hua and Chia-Wei Li (2007) Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zoological Studies 46(4): 379-388. The radulae of limpets are regarded as an ideal experimental material for studying biologically controlled mineral deposition, because they possess teeth in dif- ferent mineralization stages. The pattern of silica precipitation in the limpet, Notoacmea schrenckii (Gastropoda: Acmaeidae), was elucidated in this study using transmission electron microscopy (TEM), electron diffraction, energy-dispersive X-ray (EDX) analysis, and inductively coupled plasma mass spectrometry (ICP- MS). The ICP-MS elemental analysis showed that iron and silica both infiltrate into the radula in early stages of tooth development. Electron-dense granules in a nanometer size range were observed in ultrathin sections of tooth specimens in early mineral-deposition stage; electron diffraction analysis indicated that silica is the prima- ry component of these granules. TEM images revealed the intimate association between silica granules and the organic matrix, which implies that the organic matrix may take a more-active role in catalysis besides mere- ly functioning as a physical constraint during mineral deposition. Exposure of the tooth cusp to NH4F treatment and the appearance of silica spheres after the addition of silicate suggest that the organic molecules embedded within the minerals may assist silica precipitation.
    [Show full text]
  • 2006-2007 Intertidal Reef Biodiversity on Kangaroo
    2006-2007 Kangaroo Island Natural Resources Management Board INTERTIDAL REEF BIODIVERSITY Intertidal Reef Biodiversity on Kangaroo Island – 2007 ON KANGAROO ISLAND 1 INTERTIDAL REEF BIODIVERSITY ON KANGAROO ISLAND Oceans of Blue: Coast, Estuarine and Marine Monitoring Program A report prepared for the Kangaroo Island Natural Resources Management Board by Kirsten Benkendorff Martine Kinloch Daniel Brock June 2007 2006-2007 Kangaroo Island Natural Resources Management Board Intertidal Reef Biodiversity on Kangaroo Island – 2007 2 Oceans of Blue The views expressed and the conclusions reached in this report are those of the author and not necessarily those of persons consulted. The Kangaroo Island Natural Resources Management Board shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. Project Officer Contact Details Martine Kinloch Coast and Marine Program Manager Kangaroo Island Natural Resources Management Board PO Box 665 Kingscote SA 5223 Phone: (08) 8553 4980 Fax: (08) 8553 0122 Email: [email protected] Kangaroo Island Natural Resources Management Board Contact Details Jeanette Gellard General Manager PO Box 665 Kingscote SA 5223 Phone: (08) 8553 0111 Fax: (08) 8553 0122 Email: [email protected] © Kangaroo Island Natural Resources Management Board This document may be reproduced in whole or part for the purpose of study or training, subject to the inclusion of an acknowledgment of the source and to its not being used for commercial purposes or sale. Reproduction for purposes other than those given above requires the prior written permission of the Kangaroo Island Natural Resources Management Board.
    [Show full text]