MATHEMATICAL AMERICAN Exclusive Online Issue No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi
HEXAFLEXAGONS, PROBABILITY PARADOXES, AND THE TOWER OF HANOI For 25 of his 90 years, Martin Gard- ner wrote “Mathematical Games and Recreations,” a monthly column for Scientific American magazine. These columns have inspired hundreds of thousands of readers to delve more deeply into the large world of math- ematics. He has also made signifi- cant contributions to magic, philos- ophy, debunking pseudoscience, and children’s literature. He has produced more than 60 books, including many best sellers, most of which are still in print. His Annotated Alice has sold more than a million copies. He continues to write a regular column for the Skeptical Inquirer magazine. (The photograph is of the author at the time of the first edition.) THE NEW MARTIN GARDNER MATHEMATICAL LIBRARY Editorial Board Donald J. Albers, Menlo College Gerald L. Alexanderson, Santa Clara University John H. Conway, F.R. S., Princeton University Richard K. Guy, University of Calgary Harold R. Jacobs Donald E. Knuth, Stanford University Peter L. Renz From 1957 through 1986 Martin Gardner wrote the “Mathematical Games” columns for Scientific American that are the basis for these books. Scientific American editor Dennis Flanagan noted that this column contributed substantially to the success of the magazine. The exchanges between Martin Gardner and his readers gave life to these columns and books. These exchanges have continued and the impact of the columns and books has grown. These new editions give Martin Gardner the chance to bring readers up to date on newer twists on old puzzles and games, on new explanations and proofs, and on links to recent developments and discoveries. -
A History of Japanese Mathematics
A HISTORY OF JAPANESE MATHEMATICS BY DAVID EUGENE SMITH AND YOSHIO MIKAMI CHICAGO THE OPEN COURT PUBLISHING COMPANY 1914 , Printed by W. Drugulin, Leipzig PREFACE Although for nearly a century the greatest mathematical classics of India have been known to western scholars, and several of the more important works of the Arabs for even longer, the mathematics of China and Japan has been closed to all European and American students until very recently. Even now we have not a single translation of a Chinese treatise upon the subject, and it is only within the last dozen years that the contributions of the native Japanese school have become known in the West even by name. At the second International Congress of Mathematicians, held at Paris in 1900, Professor Fujisawa of the Imperial University of Tokio gave a brief address upon Mathematics of the old Japanese School, and this may be taken as the first contribution to the history of mathematics made by a native of that country in a European language. The next effort of this kind showed itself in occasional articles by Baron Kikuchi, as in the Niemv Archief voor Wiskunde, some of which were based upon his contributions in Japanese to one of the scientific journals of Tokio. But -the only serious attempt made up to the present time to present a well-ordered history of the subject in a European language is to be found in the very commendable papers by T. Hayashi, of the Imperial University at Sendai. The most important of these have appeared in the Nieuw Archief voor Wiskunde, and to them the authors are much indebted. -
1875–2012 Dr. Jan E. Wynn
HISTORY OF THE DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY 1875–2012 DR. LYNN E. GARNER DR. GURCHARAN S. GILL DR. JAN E. WYNN Copyright © 2013, Department of Mathematics, Brigham Young University All rights reserved 2 Foreword In August 2012, the leadership of the Department of Mathematics of Brigham Young University requested the authors to compose a history of the department. The history that we had all heard was that the department had come into being in 1954, formed from the Physics Department, and with a physicist as the first chairman. This turned out to be partially true, in that the Department of Mathematics had been chaired by physicists until 1958, but it was referred to in the University Catalog as a department as early as 1904 and the first chairman was appointed in 1906. The authors were also part of the history of the department as professors of mathematics: Gurcharan S. Gill 1960–1999 Lynn E. Garner 1963–2007 Jan E. Wynn 1966–2000 Dr. Gill (1956–1958) and Dr. Garner (1960–1962) were also students in the department and hold B. S. degrees in Mathematics from BYU. We decided to address the history of the department by dividing it into three eras of quite different characteristics. The first era (1875–1978): Early development of the department as an entity, focusing on rapid growth during the administration of Kenneth L. Hillam as chairman. The second era (1978–1990): Efforts to bring the department in line with national standards in the mathematics community and to establish research capabilities, during the administration of Peter L. -
Embedded System Security: Prevention Against Physical Access Threats Using Pufs
International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) | e-ISSN: 2319-8753, p-ISSN: 2320-6710| www.ijirset.com | Impact Factor: 7.512| || Volume 9, Issue 8, August 2020 || Embedded System Security: Prevention Against Physical Access Threats Using PUFs 1 2 3 4 AP Deepak , A Krishna Murthy , Ansari Mohammad Abdul Umair , Krathi Todalbagi , Dr.Supriya VG5 B.E. Students, Department of Electronics and Communication Engineering, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India1,2,3,4 Professor, Department of Electronics and Communication Engineering, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India5 ABSTRACT: Embedded systems are the driving force in the development of technology and innovation. It is used in plethora of fields ranging from healthcare to industrial sectors. As more and more devices come into picture, security becomes an important issue for critical application with sensitive data being used. In this paper we discuss about various vulnerabilities and threats identified in embedded system. Major part of this paper pertains to physical attacks carried out where the attacker has physical access to the device. A Physical Unclonable Function (PUF) is an integrated circuit that is elementary to any hardware security due to its complexity and unpredictability. This paper presents a new low-cost CMOS image sensor and nano PUF based on PUF targeting security and privacy. PUFs holds the future to safer and reliable method of deploying embedded systems in the coming years. KEYWORDS:Physically Unclonable Function (PUF), Challenge Response Pair (CRP), Linear Feedback Shift Register (LFSR), CMOS Image Sensor, Polyomino Partition Strategy, Memristor. I. INTRODUCTION The need for security is universal and has become a major concern in about 1976, when the first initial public key primitives and protocols were established. -
A Review of the History of Japanese Mathematics
Revue d’histoire des math´ematiques, 7 (2001), p. 137–155. A REVIEW OF THE HISTORY OF JAPANESE MATHEMATICS Tsukane OGAWA (*) ABSTRACT. — This review aims to introduce Japanese mathematics to a non- expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages. RESUM´ E´.—APERC¸ U SUR L’HISTOIRE DES MATHEMATIQUES´ JAPONAISES. Le but de cette note est de pr´esenter les math´ematiques japonaises `a un public non sp´ecialis´e dans le domaine. Les math´ematiques au Japon sont bri`evement caract´eris´ees, leur histoire, telle qu’elle s’est d´evelopp´ee durant le dernier si`ecle, est pass´ee en revue et finalement une importante bibliographie dans les principales langues europ´eennes est propos´ee, mˆeme si elle ne peut pr´etendre `a l’exhaustivit´e. 1. INTRODUCTION – NOT ONLY SANGAKU The custom of hanging sangaku ( ), wooden plates on which are inscribed mathematical problems and their answers, under the roofs of shrines in the Edo period (1603–1867) in Japan is familiar enough to have been illustrated and described in Scientific American, May 1998 [Rothman 1998]. It is, however, obvious that sangaku is not all there is to Japanese mathematics. It would be fallacious to consider that the essence of Japanese mathematics reveals itself in sangaku. As a beginning, this essay attempts briefly to introduce Japanese mathematics to a non-Japanese readership. It will answer the following questions : 1) What kind of mathematical disciplines developed in Japan ? 2) How were mathematical expressions written in vertical typesetting ? 3) How did the Japanese calculate ? 4) Is it true that, lacking proofs, Japanese mathematics was not logical ? (*) Texte re¸cu le 7 mars 1999, r´evis´e le 11 novembre 2000. -
The Geometry Center Reaches
THE NEWSLETTER OF THE MA THEMA TICAL ASSOCIATION OF AMERICA The Geometry Center Reaches Out Volume IS, Number 1 A major mission of the NSF-sponsored University of Minnesota Geometry Center is to support, develop, and promote the communication of mathematics at all levels. Last year, the center increased its efforts to reach and to educate diffe rent and dive rse groups ofpeople about the beauty and utility of mathematics. Center members Harvey Keynes and Frederick J. Wicklin describe In this Issue some recent efforts to reach the general public, professional mathematicians, high school teach ers, talented youth, and underrepresented groups in mathematics. 3 MAA President's Column Museum Mathematics Just a few years ago, a trip to the local 7 Mathematics science museum resembled a visit to Awareness Week a taxidermy shop. The halls of the science museum displayed birds of 8 Highlights from prey, bears, cougars, and moose-all stiff, stuffed, mounted on pedestals, the Joint and accompanied by "Don't Touch" Mathematics signs. The exhibits conveyed to all Meetings visitors that science was rigid, bor ing, and hardly accessible to the gen 14 NewGRE eral public. Mathematical Fortunately times have changed. To Reasoning Test day even small science museums lit erally snap, crackle, and pop with The graphical interface to a museum exhibit that allows visitors to interactive demonstrations of the explore regular polyhedra and symmetries. 20 Letters to the physics of electricity, light, and sound. Editor Visitors are encouraged to pedal, pump, and very young children to adults, so it is accessible push their way through the exhibit hall. -
The Gion Shrine Problem: a Solution in Geometry
The Gion Shrine Problem: A Solution in Geometry Melissa Holly Virginia Commonwealth University June, 2018 © the author ii Table of Contents List of Figures ……………………………………………………………………… iv Abstract …………………………………………………………………………....... v 1. Introduction …………………………………………………………………….. 1 2. Historical Background ………………………………………………………… 3 2.1. Edo Period Japan ……………………………………………………………. 3 2.2. Intellectual Aspects of Edo Period Japan ………………………………… 5 2.3. Edo Period Literature and Arts …………………………………………….. 6 2.4. Wasan – Japanese Mathematics …………………………………………. 8 2.5. Sangaku ……………………………………………………………………… 11 2.6. Sangaku Translation ……………………………………………………….. 16 3. The Gion Shrine Problem …………………………………………………….. 19 3.1. The Gion Shrine Sangaku History ……………………………………….. 19 3.2. The Gion Shrine Sangaku ………………………………………………… 20 3.2.1. Modern Interpretations: The Problem – The Design …………….. 21 3.2.2. Modern Interpretations: The Problem – The Description ……….. 22 3.2.3. Modern Interpretations: The Answer ………………………………. 24 3.2.4. Modern Interpretations: The Formulae …………………………….. 25 3.2.5. The Gion Shrine Sangaku: My Interpretation ……………………… 28 4. The Solution In Geometry ……………………………………………………… 33 5. The Gion Shrine Problem Author …………………………………………….. 40 6. Justification ……………………………………………………………………… 44 iii 6.1. Justification of Solution ……………………………………………………… 44 6.2. Justification of Author ……………………………………………………… 47 7. Conclusion and Sangaku Author’s Wider Message ……………………… 54 8. Bibliography …………………………………………………………………….. 56 iv List of Figures and Tables Figures: 1. "A -
Some Open Problems in Polyomino Tilings
Some Open Problems in Polyomino Tilings Andrew Winslow1 University of Texas Rio Grande Valley, Edinburg, TX, USA [email protected] Abstract. The author surveys 15 open problems regarding the algorith- mic, structural, and existential properties of polyomino tilings. 1 Introduction In this work, we consider a variety of open problems related to polyomino tilings. For further reference on polyominoes and tilings, the original book on the topic by Golomb [15] (on polyominoes) and more recent book of Gr¨unbaum and Shep- hard [23] (on tilings) are essential. Also see [2,26] and [19,21] for open problems in polyominoes and tiling more broadly, respectively. We begin by introducing the definitions used throughout; other definitions are introduced as necessary in later sections. Definitions. A polyomino is a subset of R2 formed by a strongly connected union of axis-aligned unit squares centered at locations on the square lattice Z2. Let T = fT1;T2;::: g be an infinite set of finite simply connected closed sets of R2. Provided the elements of T have pairwise disjoint interiors and cover the Euclidean plane, then T is a tiling and the elements of T are called tiles. Provided every Ti 2 T is congruent to a common shape T , then T is mono- hedral, T is the prototile of T , and the elements of T are called copies of T . In this case, T is said to have a tiling. 2 Isohedral Tilings We begin with monohedral tilings of the plane where the prototile is a polyomino. If a tiling T has the property that for all Ti;Tj 2 T , there exists a symmetry of T mapping Ti to Tj, then T is isohedral; otherwise the tiling is non-isohedral (see Figure 1). -
Survey of Mathematical Problems Student Guide
Survey of Mathematical Problems Student Guide Harold P. Boas and Susan C. Geller Texas A&M University August 2006 Copyright c 1995–2006 by Harold P. Boas and Susan C. Geller. All rights reserved. Preface Everybody talks about the weather, but nobody does anything about it. Mark Twain College mathematics instructors commonly complain that their students are poorly prepared. It is often suggested that this is a corollary of the stu- dents’ high school teachers being poorly prepared. International studies lend credence to the notion that our hard-working American school teachers would be more effective if their mathematical understanding and appreciation were enhanced and if they were empowered with creative teaching tools. At Texas A&M University, we decided to stop talking about the problem and to start doing something about it. We have been developing a Master’s program targeted at current and prospective teachers of mathematics at the secondary school level or higher. This course is a core part of the program. Our aim in the course is not to impart any specific body of knowledge, but rather to foster the students’ understanding of what mathematics is all about. The goals are: to increase students’ mathematical knowledge and skills; • to expose students to the breadth of mathematics and to many of its • interesting problems and applications; to encourage students to have fun with mathematics; • to exhibit the unity of diverse mathematical fields; • to promote students’ creativity; • to increase students’ competence with open-ended questions, with ques- • tions whose answers are not known, and with ill-posed questions; iii iv PREFACE to teach students how to read and understand mathematics; and • to give students confidence that, when their own students ask them ques- • tions, they will either know an answer or know where to look for an answer. -
Shapes Puzzle 1
Shapes Puzzle 1 The twelve pentominoes are shown on the left. On the right, they have been placed together in pairs. Can you show which two pentominoes have been used to make each shape? (Each pentomino is only used once.) The solution can be obtained logically, without any trial and error. Try to explain how you find your solution. Shapes Puzzle 2 Since pentominoes proved very popular last month, here is another puzzle. The twelve pentominoes are shown on the left. On the right is a shape which can be formed from four pentominoes. Divide the 12 shapes into 3 groups of 4, and fit each group together to make the shape on the right (so you will end up with three copies of this shape, which between them use the 12 pentominoes. Try to explain how you find your solution. (Hint: look for key shapes which can only fit in certain places.) Shapes Puzzle 3 Paint 10 more squares black so that the 5x6 unit rectangle on the right is divided into two pieces: one black and the other white, each with the same size and shape. Shapes Puzzle 4 I have a piece of carpet 10m square. I want to use it to carpet my lounge, which is 12m by 9m, but has a fixed aquarium 1m by 8m in the centre, as shown. Show how I can cut the carpet into just two pieces which I can then use to carpet the room exactly. [Hint: The cut is entirely along the 1m gridlines shown.] Shapes Puzzle 5 Can you draw a continuous line which passes through every square in the grid on the right, except the squares which are shaded in? (The grid on the left has been done for you as an example.) Try to explain the main steps towards your solution, even if you can't explain every detail. -
Geometry Illuminated an Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry
AMS / MAA TEXTBOOKS VOL 30 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936098 Print ISBN: 978-1-93951-211-6 Electronic ISBN: 978-1-61444-618-7 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/030 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey The University of Virginia’s College at Wise Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G. -
2009Catalog.Pdf
ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler .