MATHEMATICAL AMERICAN Exclusive Online Issue No

Total Page:16

File Type:pdf, Size:1020Kb

MATHEMATICAL AMERICAN Exclusive Online Issue No COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. ScientificAmerican.com MATHEMATICAL AMERICAN exclusive online issue no. 10 “Mathematics, rightly viewed, possesses not only truth, but supreme beauty." So wrote British philosopher and logician Bertrand Russell nearly 100 years ago. He was not alone in this sentiment. French mathematician Henri Poincaré declared that "the mathematician does not study pure mathematics because it is useful; he studies it because he delights in it and he delights in it because it is beautiful." Likewise, Einstein described pure mathematics as "the poetry of logical ideas." Indeed, many a scholar has remarked on the elegance of the science. It is in this spirit that we have put together a collection of Scientific American articles about math. In this exclusive online issue, Martin Gardner, longtime editor of the magazine’s Mathematical Games column, reflects on 25 years of fun puzzles and serious discoveries; other scholars explore the concept of infinity, the fate of mathematical proofs in the age of computers, and the thriving of native mathematics during Japan’s period of national seclusion. The anthology also includes articles that trace the long, hard roads to resolving Fermat’s Last Theorem and Zeno’s paradoxes, two problems that for centuries captivated--and tormented--some of the discipline’s most beautiful minds. —The Editors TABLE OF CONTENTS 2 A Quarter-Century of Recreational Mathematics BY MARTIN GARDNER; SCIENTIFIC AMERICAN, AUGUST 1998 The author of Scientific American's column "Mathematical Games" from 1956 to 1981 recounts 25 years of amusing puzzles and serious discoveries 10 The Death of Proof BY JOHN HORGAN; SCIENTIFIC AMERICAN, OCTOBER 1993 Computers are transforming the way mathematicians discover, prove and communicate ideas, but is there a place for absolute certainty in this brave new world? 16 Resolving Zeno's Paradoxes BY WILLIAM I. MCLAUGHLIN; SCIENTIFIC AMERICAN, NOVEMBER 1994 For millennia, mathematicians and philosophers have tried to refute Zeno's paradoxes, a set of riddles suggesting that motion is inherently impossible. At last, a solution has been found 21 A Brief History of Infinity BY A. W. MOORE; SCIENTIFIC AMERICAN, APRIL 1995 The infinite has always been a slippery concept. Even the commonly accepted mathematical view, developed by Georg Cantor, may not have truly placed infinity on a rigorous foundation 25 Fermat's Last Stand BY SIMON SINGH AND KENNETH A. RIBET; SCIENTIFIC AMERICAN, NOVEMBER 1997 His most notorious theorem baffled the greatest minds for more than three centuries. But after 10 years of work, one mathematician cracked it 29 Japanese Temple Geometry BY TONY ROTHMAN; SCIENTIFIC AMERICAN, MAY 1998 During Japan's period of national seclusion (1639-1854), native mathematics thrived, as evidenced in "sangaku"— wooden tablets engraved with geometry problems hung under the roofs of shrines and temples 1 SCIENTIFIC AMERICAN EXCLUSIVE ONLINE ISSUE DECEMBER 2003 COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. Originally published in August 1998 A Quarter-Century of Recreational Mathematics The author of Scientific American’s column “Mathematical Games” from 1956 to 1981 recounts 25 years of amusing puzzles and serious discoveries by Martin Gardner “Amusement is one of the fields of ics were in print. The classic of the and serious math is a blurry one. Many applied math.” genre—Mathematical Recreations and professional mathematicians regard —William F. White, Essays, written by the eminent English their work as a form of play, in the A Scrapbook of mathematician W. W. Rouse Ball in same way professional golfers or bas- Elementary Mathematics 1892—was available in a version up- ketball stars might. In general, math is dated by another legendary figure, the considered recreational if it has a play- Canadian geometer H.S.M. Coxeter. ful aspect that can be understood and Dover Publications had put out a trans- appreciated by nonmathematicians. y “Mathematical Games” lation from the French of La Mathéma- Recreational math includes elementary column began in the De- tique des Jeux (Mathematical Recrea- problems with elegant, and at times Mcember 1956 issue of Sci- tions), by Belgian number theorist Mau- surprising, solutions. It also encompass- entific American with an article on rice Kraitchik. But aside from a few other es mind-bending paradoxes, ingenious hexaflexagons. These curious struc- puzzle collections, that was about it. games, bewildering magic tricks and tures, created by folding an ordinary Since then, there has been a remark- topological curiosities such as Möbius strip of paper into a hexagon and then able explosion of books on the subject, bands and Klein bottles. In fact, almost gluing the ends together, could be many written by distinguished mathe- every branch of mathematics simpler turned inside out repeatedly, revealing maticians. The authors include Ian Stew- than calculus has areas that can be con- one or more hidden faces. The struc- art, who now writes Scientific Ameri- sidered recreational. (Some amusing ex- tures were invented in 1939 by a group can’s “Mathematical Recreations” col- amples are shown on the following of Princeton University graduate stu- umn; John H. Conway of Princeton page.) dents. Hexaflexagons are fun to play University; Richard K. Guy of the Uni- with, but more important, they show versity of Calgary; and Elwyn R. Berle- Ticktacktoe in the Classroom the link between recreational puzzles kamp of the University of California at and “serious” mathematics: one of their Berkeley. Articles on recreational math- he monthly magazine published by inventors was Richard Feynman, who ematics also appear with increasing fre- Tthe National Council of Teachers went on to become one of the most fa- quency in mathematical periodicals. of Mathematics, Mathematics Teacher, mous theoretical physicists of the cen- The quarterly Journal of Recreational often carries articles on recreational top- tury. Mathematics began publication in ics. Most teachers, however, continue to At the time I started my column, only 1968. ignore such material. For 40 years I a few books on recreational mathemat- The line between entertaining math have done my best to convince educa- 2 SCIENTIFIC AMERICAN EXCLUSIVE ONLINE ISSUE DECEMBER 2003 COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. Four Puzzles from Martin Gardner (The answers are on page 75.) 1 2 ILLUSTRATIONS BY IAN WORPOLE ILLUSTRATIONS 1 1 1 3 3 3 ? ? r. Jones, a cardsharp, puts three cards face down on a table. he matrix of numbers above is a curious type of magic square. MOne of the cards is an ace; the other two are face cards. You TCircle any number in the matrix, then cross out all the numbers place a finger on one of the cards, betting that this card is the ace. in the same column and row. Next, circle any number that has not 1 The probability that you’ve picked the ace is clearly /3. Jones now se- been crossed out and again cross out the row and column containing cretly peeks at each card. Because there is only one ace among the that number. Continue in this way until you have circled six numbers. three cards, at least one of the cards you didn’t choose must be a face Clearly, each number has been randomly selected. But no matter card. Jones turns over this card and shows it to you. What is the prob- which numbers you pick, they always add up to the same sum. What ability that your finger is now on the ace? is this sum? And, more important, why does this trick always work? 3 4 12 3 456 78910 CUT THE DECK 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 RIFFLE- 33 34 35 36 37 38 39 SHUFFLE 40 41 42 43 44 45 46 4847 5049 rinted above are the first three verses of Genesis in the King magician arranges a deck of cards so that the black and PJames Bible. Select any of the 10 words in the first verse: “In the A red cards alternate. She cuts the deck about in half, making sure beginning God created the heaven and the earth.” Count the num- that the bottom cards of each half are not the same color. Then she ber of letters in the chosen word and call this number x. Then go to allows you to riffle-shuffle the two halves together, as thoroughly or the word that is x words ahead. (For example, if you picked “in,” go to carelessly as you please. When you’re done, she picks the first two “beginning.”) Now count the number of letters in this word—call it cards from the top of the deck. They are a black card and a red card n—then jump ahead another n words. Continue in this manner until (not necessarily in that order). The next two are also a black card and your chain of words enters the third verse of Genesis. a red card. In fact, every succeeding pair of cards will include one of On what word does your count end? Is the answer happenstance each color. How does she do it? Why doesn’t shuffling the deck pro- or part of a divine plan? duce a random sequence? 3 SCIENTIFIC AMERICAN EXCLUSIVE ONLINE ISSUE DECEMBER 2003 COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC. ab e 2 1 √3 cd IAN WORPOLE LOW-ORDER REP-TILES fit together to make larger replicas of themselves. The isosceles right triangle (a) is a rep-2 figure: two such triangles form a larger triangle with the same shape. A rep-3 triangle (b) has angles of 30, 60 and 90 degrees. Other rep- tiles include a rep-4 quadrilateral (c) and a rep-4 hexagon (d). The sphinx (e) is the only known rep-4 pentagon.
Recommended publications
  • Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi
    HEXAFLEXAGONS, PROBABILITY PARADOXES, AND THE TOWER OF HANOI For 25 of his 90 years, Martin Gard- ner wrote “Mathematical Games and Recreations,” a monthly column for Scientific American magazine. These columns have inspired hundreds of thousands of readers to delve more deeply into the large world of math- ematics. He has also made signifi- cant contributions to magic, philos- ophy, debunking pseudoscience, and children’s literature. He has produced more than 60 books, including many best sellers, most of which are still in print. His Annotated Alice has sold more than a million copies. He continues to write a regular column for the Skeptical Inquirer magazine. (The photograph is of the author at the time of the first edition.) THE NEW MARTIN GARDNER MATHEMATICAL LIBRARY Editorial Board Donald J. Albers, Menlo College Gerald L. Alexanderson, Santa Clara University John H. Conway, F.R. S., Princeton University Richard K. Guy, University of Calgary Harold R. Jacobs Donald E. Knuth, Stanford University Peter L. Renz From 1957 through 1986 Martin Gardner wrote the “Mathematical Games” columns for Scientific American that are the basis for these books. Scientific American editor Dennis Flanagan noted that this column contributed substantially to the success of the magazine. The exchanges between Martin Gardner and his readers gave life to these columns and books. These exchanges have continued and the impact of the columns and books has grown. These new editions give Martin Gardner the chance to bring readers up to date on newer twists on old puzzles and games, on new explanations and proofs, and on links to recent developments and discoveries.
    [Show full text]
  • A History of Japanese Mathematics
    A HISTORY OF JAPANESE MATHEMATICS BY DAVID EUGENE SMITH AND YOSHIO MIKAMI CHICAGO THE OPEN COURT PUBLISHING COMPANY 1914 , Printed by W. Drugulin, Leipzig PREFACE Although for nearly a century the greatest mathematical classics of India have been known to western scholars, and several of the more important works of the Arabs for even longer, the mathematics of China and Japan has been closed to all European and American students until very recently. Even now we have not a single translation of a Chinese treatise upon the subject, and it is only within the last dozen years that the contributions of the native Japanese school have become known in the West even by name. At the second International Congress of Mathematicians, held at Paris in 1900, Professor Fujisawa of the Imperial University of Tokio gave a brief address upon Mathematics of the old Japanese School, and this may be taken as the first contribution to the history of mathematics made by a native of that country in a European language. The next effort of this kind showed itself in occasional articles by Baron Kikuchi, as in the Niemv Archief voor Wiskunde, some of which were based upon his contributions in Japanese to one of the scientific journals of Tokio. But -the only serious attempt made up to the present time to present a well-ordered history of the subject in a European language is to be found in the very commendable papers by T. Hayashi, of the Imperial University at Sendai. The most important of these have appeared in the Nieuw Archief voor Wiskunde, and to them the authors are much indebted.
    [Show full text]
  • 1875–2012 Dr. Jan E. Wynn
    HISTORY OF THE DEPARTMENT OF MATHEMATICS BRIGHAM YOUNG UNIVERSITY 1875–2012 DR. LYNN E. GARNER DR. GURCHARAN S. GILL DR. JAN E. WYNN Copyright © 2013, Department of Mathematics, Brigham Young University All rights reserved 2 Foreword In August 2012, the leadership of the Department of Mathematics of Brigham Young University requested the authors to compose a history of the department. The history that we had all heard was that the department had come into being in 1954, formed from the Physics Department, and with a physicist as the first chairman. This turned out to be partially true, in that the Department of Mathematics had been chaired by physicists until 1958, but it was referred to in the University Catalog as a department as early as 1904 and the first chairman was appointed in 1906. The authors were also part of the history of the department as professors of mathematics: Gurcharan S. Gill 1960–1999 Lynn E. Garner 1963–2007 Jan E. Wynn 1966–2000 Dr. Gill (1956–1958) and Dr. Garner (1960–1962) were also students in the department and hold B. S. degrees in Mathematics from BYU. We decided to address the history of the department by dividing it into three eras of quite different characteristics. The first era (1875–1978): Early development of the department as an entity, focusing on rapid growth during the administration of Kenneth L. Hillam as chairman. The second era (1978–1990): Efforts to bring the department in line with national standards in the mathematics community and to establish research capabilities, during the administration of Peter L.
    [Show full text]
  • Embedded System Security: Prevention Against Physical Access Threats Using Pufs
    International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) | e-ISSN: 2319-8753, p-ISSN: 2320-6710| www.ijirset.com | Impact Factor: 7.512| || Volume 9, Issue 8, August 2020 || Embedded System Security: Prevention Against Physical Access Threats Using PUFs 1 2 3 4 AP Deepak , A Krishna Murthy , Ansari Mohammad Abdul Umair , Krathi Todalbagi , Dr.Supriya VG5 B.E. Students, Department of Electronics and Communication Engineering, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India1,2,3,4 Professor, Department of Electronics and Communication Engineering, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India5 ABSTRACT: Embedded systems are the driving force in the development of technology and innovation. It is used in plethora of fields ranging from healthcare to industrial sectors. As more and more devices come into picture, security becomes an important issue for critical application with sensitive data being used. In this paper we discuss about various vulnerabilities and threats identified in embedded system. Major part of this paper pertains to physical attacks carried out where the attacker has physical access to the device. A Physical Unclonable Function (PUF) is an integrated circuit that is elementary to any hardware security due to its complexity and unpredictability. This paper presents a new low-cost CMOS image sensor and nano PUF based on PUF targeting security and privacy. PUFs holds the future to safer and reliable method of deploying embedded systems in the coming years. KEYWORDS:Physically Unclonable Function (PUF), Challenge Response Pair (CRP), Linear Feedback Shift Register (LFSR), CMOS Image Sensor, Polyomino Partition Strategy, Memristor. I. INTRODUCTION The need for security is universal and has become a major concern in about 1976, when the first initial public key primitives and protocols were established.
    [Show full text]
  • A Review of the History of Japanese Mathematics
    Revue d’histoire des math´ematiques, 7 (2001), p. 137–155. A REVIEW OF THE HISTORY OF JAPANESE MATHEMATICS Tsukane OGAWA (*) ABSTRACT. — This review aims to introduce Japanese mathematics to a non- expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages. RESUM´ E´.—APERC¸ U SUR L’HISTOIRE DES MATHEMATIQUES´ JAPONAISES. Le but de cette note est de pr´esenter les math´ematiques japonaises `a un public non sp´ecialis´e dans le domaine. Les math´ematiques au Japon sont bri`evement caract´eris´ees, leur histoire, telle qu’elle s’est d´evelopp´ee durant le dernier si`ecle, est pass´ee en revue et finalement une importante bibliographie dans les principales langues europ´eennes est propos´ee, mˆeme si elle ne peut pr´etendre `a l’exhaustivit´e. 1. INTRODUCTION – NOT ONLY SANGAKU The custom of hanging sangaku ( ), wooden plates on which are inscribed mathematical problems and their answers, under the roofs of shrines in the Edo period (1603–1867) in Japan is familiar enough to have been illustrated and described in Scientific American, May 1998 [Rothman 1998]. It is, however, obvious that sangaku is not all there is to Japanese mathematics. It would be fallacious to consider that the essence of Japanese mathematics reveals itself in sangaku. As a beginning, this essay attempts briefly to introduce Japanese mathematics to a non-Japanese readership. It will answer the following questions : 1) What kind of mathematical disciplines developed in Japan ? 2) How were mathematical expressions written in vertical typesetting ? 3) How did the Japanese calculate ? 4) Is it true that, lacking proofs, Japanese mathematics was not logical ? (*) Texte re¸cu le 7 mars 1999, r´evis´e le 11 novembre 2000.
    [Show full text]
  • The Geometry Center Reaches
    THE NEWSLETTER OF THE MA THEMA TICAL ASSOCIATION OF AMERICA The Geometry Center Reaches Out Volume IS, Number 1 A major mission of the NSF-sponsored University of Minnesota Geometry Center is to support, develop, and promote the communication of mathematics at all levels. Last year, the center increased its efforts to reach and to educate diffe rent and dive rse groups ofpeople about the beauty and utility of mathematics. Center members Harvey Keynes and Frederick J. Wicklin describe In this Issue some recent efforts to reach the general public, professional mathematicians, high school teach­ ers, talented youth, and underrepresented groups in mathematics. 3 MAA President's Column Museum Mathematics Just a few years ago, a trip to the local 7 Mathematics science museum resembled a visit to Awareness Week a taxidermy shop. The halls of the science museum displayed birds of 8 Highlights from prey, bears, cougars, and moose-all stiff, stuffed, mounted on pedestals, the Joint and accompanied by "Don't Touch" Mathematics signs. The exhibits conveyed to all Meetings visitors that science was rigid, bor­ ing, and hardly accessible to the gen­ 14 NewGRE eral public. Mathematical Fortunately times have changed. To­ Reasoning Test day even small science museums lit­ erally snap, crackle, and pop with The graphical interface to a museum exhibit that allows visitors to interactive demonstrations of the explore regular polyhedra and symmetries. 20 Letters to the physics of electricity, light, and sound. Editor Visitors are encouraged to pedal, pump, and very young children to adults, so it is accessible push their way through the exhibit hall.
    [Show full text]
  • The Gion Shrine Problem: a Solution in Geometry
    The Gion Shrine Problem: A Solution in Geometry Melissa Holly Virginia Commonwealth University June, 2018 © the author ii Table of Contents List of Figures ……………………………………………………………………… iv Abstract …………………………………………………………………………....... v 1. Introduction …………………………………………………………………….. 1 2. Historical Background ………………………………………………………… 3 2.1. Edo Period Japan ……………………………………………………………. 3 2.2. Intellectual Aspects of Edo Period Japan ………………………………… 5 2.3. Edo Period Literature and Arts …………………………………………….. 6 2.4. Wasan – Japanese Mathematics …………………………………………. 8 2.5. Sangaku ……………………………………………………………………… 11 2.6. Sangaku Translation ……………………………………………………….. 16 3. The Gion Shrine Problem …………………………………………………….. 19 3.1. The Gion Shrine Sangaku History ……………………………………….. 19 3.2. The Gion Shrine Sangaku ………………………………………………… 20 3.2.1. Modern Interpretations: The Problem – The Design …………….. 21 3.2.2. Modern Interpretations: The Problem – The Description ……….. 22 3.2.3. Modern Interpretations: The Answer ………………………………. 24 3.2.4. Modern Interpretations: The Formulae …………………………….. 25 3.2.5. The Gion Shrine Sangaku: My Interpretation ……………………… 28 4. The Solution In Geometry ……………………………………………………… 33 5. The Gion Shrine Problem Author …………………………………………….. 40 6. Justification ……………………………………………………………………… 44 iii 6.1. Justification of Solution ……………………………………………………… 44 6.2. Justification of Author ……………………………………………………… 47 7. Conclusion and Sangaku Author’s Wider Message ……………………… 54 8. Bibliography …………………………………………………………………….. 56 iv List of Figures and Tables Figures: 1. "A
    [Show full text]
  • Some Open Problems in Polyomino Tilings
    Some Open Problems in Polyomino Tilings Andrew Winslow1 University of Texas Rio Grande Valley, Edinburg, TX, USA [email protected] Abstract. The author surveys 15 open problems regarding the algorith- mic, structural, and existential properties of polyomino tilings. 1 Introduction In this work, we consider a variety of open problems related to polyomino tilings. For further reference on polyominoes and tilings, the original book on the topic by Golomb [15] (on polyominoes) and more recent book of Gr¨unbaum and Shep- hard [23] (on tilings) are essential. Also see [2,26] and [19,21] for open problems in polyominoes and tiling more broadly, respectively. We begin by introducing the definitions used throughout; other definitions are introduced as necessary in later sections. Definitions. A polyomino is a subset of R2 formed by a strongly connected union of axis-aligned unit squares centered at locations on the square lattice Z2. Let T = fT1;T2;::: g be an infinite set of finite simply connected closed sets of R2. Provided the elements of T have pairwise disjoint interiors and cover the Euclidean plane, then T is a tiling and the elements of T are called tiles. Provided every Ti 2 T is congruent to a common shape T , then T is mono- hedral, T is the prototile of T , and the elements of T are called copies of T . In this case, T is said to have a tiling. 2 Isohedral Tilings We begin with monohedral tilings of the plane where the prototile is a polyomino. If a tiling T has the property that for all Ti;Tj 2 T , there exists a symmetry of T mapping Ti to Tj, then T is isohedral; otherwise the tiling is non-isohedral (see Figure 1).
    [Show full text]
  • Survey of Mathematical Problems Student Guide
    Survey of Mathematical Problems Student Guide Harold P. Boas and Susan C. Geller Texas A&M University August 2006 Copyright c 1995–2006 by Harold P. Boas and Susan C. Geller. All rights reserved. Preface Everybody talks about the weather, but nobody does anything about it. Mark Twain College mathematics instructors commonly complain that their students are poorly prepared. It is often suggested that this is a corollary of the stu- dents’ high school teachers being poorly prepared. International studies lend credence to the notion that our hard-working American school teachers would be more effective if their mathematical understanding and appreciation were enhanced and if they were empowered with creative teaching tools. At Texas A&M University, we decided to stop talking about the problem and to start doing something about it. We have been developing a Master’s program targeted at current and prospective teachers of mathematics at the secondary school level or higher. This course is a core part of the program. Our aim in the course is not to impart any specific body of knowledge, but rather to foster the students’ understanding of what mathematics is all about. The goals are: to increase students’ mathematical knowledge and skills; • to expose students to the breadth of mathematics and to many of its • interesting problems and applications; to encourage students to have fun with mathematics; • to exhibit the unity of diverse mathematical fields; • to promote students’ creativity; • to increase students’ competence with open-ended questions, with ques- • tions whose answers are not known, and with ill-posed questions; iii iv PREFACE to teach students how to read and understand mathematics; and • to give students confidence that, when their own students ask them ques- • tions, they will either know an answer or know where to look for an answer.
    [Show full text]
  • Shapes Puzzle 1
    Shapes Puzzle 1 The twelve pentominoes are shown on the left. On the right, they have been placed together in pairs. Can you show which two pentominoes have been used to make each shape? (Each pentomino is only used once.) The solution can be obtained logically, without any trial and error. Try to explain how you find your solution. Shapes Puzzle 2 Since pentominoes proved very popular last month, here is another puzzle. The twelve pentominoes are shown on the left. On the right is a shape which can be formed from four pentominoes. Divide the 12 shapes into 3 groups of 4, and fit each group together to make the shape on the right (so you will end up with three copies of this shape, which between them use the 12 pentominoes. Try to explain how you find your solution. (Hint: look for key shapes which can only fit in certain places.) Shapes Puzzle 3 Paint 10 more squares black so that the 5x6 unit rectangle on the right is divided into two pieces: one black and the other white, each with the same size and shape. Shapes Puzzle 4 I have a piece of carpet 10m square. I want to use it to carpet my lounge, which is 12m by 9m, but has a fixed aquarium 1m by 8m in the centre, as shown. Show how I can cut the carpet into just two pieces which I can then use to carpet the room exactly. [Hint: The cut is entirely along the 1m gridlines shown.] Shapes Puzzle 5 Can you draw a continuous line which passes through every square in the grid on the right, except the squares which are shaded in? (The grid on the left has been done for you as an example.) Try to explain the main steps towards your solution, even if you can't explain every detail.
    [Show full text]
  • Geometry Illuminated an Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry
    AMS / MAA TEXTBOOKS VOL 30 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2015936098 Print ISBN: 978-1-93951-211-6 Electronic ISBN: 978-1-61444-618-7 Printed in the United States of America Current Printing (last digit): 10987654321 10.1090/text/030 Geometry Illuminated An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry Matthew Harvey The University of Virginia’s College at Wise Published and distributed by The Mathematical Association of America Council on Publications and Communications Jennifer J. Quinn, Chair Committee on Books Fernando Gouvea,ˆ Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Matthias Beck Richard E. Bedient Otto Bretscher Heather Ann Dye Charles R. Hampton Suzanne Lynne Larson John Lorch Susan F. Pustejovsky MAA TEXTBOOKS Bridge to Abstract Mathematics, Ralph W. Oberste-Vorth, Aristides Mouzakitis, and Bonita A. Lawrence Calculus Deconstructed: A Second Course in First-Year Calculus, Zbigniew H. Nitecki Calculus for the Life Sciences: A Modeling Approach, James L. Cornette and Ralph A. Ackerman Combinatorics: A Guided Tour, David R. Mazur Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Complex Numbers and Geometry, Liang-shin Hahn A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Differential Geometry and its Applications, John Oprea Distilling Ideas: An Introduction to Mathematical Thinking, Brian P.Katz and Michael Starbird Elementary Cryptanalysis, Abraham Sinkov Elementary Mathematical Models, Dan Kalman An Episodic History of Mathematics: Mathematical Culture Through Problem Solving, Steven G.
    [Show full text]
  • 2009Catalog.Pdf
    ANNUAL CATALOG 2009 New . 1 Brain Fitness and Mathematics Classic Monographs . 10 In recent months, I have seen public television programs devoted to brain fitness. They Business Mathematics . 11 point out the great benefits of continuing to learn as we age, in particular the benefits Transition to Advanced Mathematics/ of keeping our brains healthy. Many of the exercises in brain fitness programs that I have seen have a strong mathematical component, with considerable emphasis on Analysis . 12 pattern recognition. These programs are expensive, often running between $300-$400. Analysis/Applied Mathematics/ As a mathematician, you are good at pattern recognition and related habits of mind, Calculus . 13 and as you age it’s important that you continue to exercise your brain by learning more Calculus . 14 mathematics, your favorite subject. You can do that through research, reading, and solving problems. Books and journals of the MAA can assist in building brain fitness by Careers/Combinatorics/Cryptology . 15 providing stimulating mathematical reading and problems. Moreover, for considerably Game Theory/Geometry . 16 less than $400, you can purchase more than ten exemplary books from the MAA that Geometry/Topology . 17 will contribute to keeping your brain fit and expanding your knowledge of mathematics at the same time. It’s a really a no-brainer if given the choice between purchasing a General Education/Quantitative brain fitness program and MAA books. For starters, reading an MAA book is more Literacy/History. 19 enjoyable than using a brain fitness program. A Celebration of the Life and Work of All of us want to keep our most important possession–our brains–healthy, and the Leonhard Euler .
    [Show full text]