Signals Volume 09 Number 08

Total Page:16

File Type:pdf, Size:1020Kb

Signals Volume 09 Number 08 Signals Volume 09 Number 08 NAAPO (North American AstroPhysical Observatory) "Signals" Volume 9 Number 8 The NAAPO Newsletter (September 1993) NAAPO Coordinator: Editor: Dr. Philip E. Barnhart Earl W. Phillips, Jr. Dept. of Physics/Astronomy 7893 Thornfield Lane Otterbein College Columbus, Ohio 43235 Westerville, Ohio 43081 614-764-0476 614-898-1516 Meetings are held 1st & 3rd Saturdays of each month, beginning at 10:00am; at the office building at the site of the Radio Telescope; and each Tuesday evening starting at 5:00pm, at Room 805, Dreese Hall, OSU Campus. http://www.naapo.org/NAAPO-News/Vol09/v09n08.htm (1 of 14)6/10/2004 12:12:39 PM Signals Volume 09 Number 08 IN THIS ISSUE: ● Summer Intern's Report ● Loch Dixon Mystery Solved ● HRMS Quarterly Report ● Meeting Notes ● JPL Mission Updates ● Mars Observer Update ● Light Pollution Update ● Coordinator's Corner SUMMER INTERN'S REPORT By: Malinda McKay & Chris Slack This summer was a summer of antenna pattern measurements. We started off with something relatively simple, a 2 element beam cut to 1420MHz This was the antenna normally used on the signal squirter. Our reasoning for measuring this antenna was that none of us had ever really done an empirical study of antenna patterns, and a small antenna seemed to be a logical first step before tackling the Big Ear. The setup used for testing the antenna consisted of a transmitter and a receiver. The transmitter was a 1 mW signal source with a 16dB amplifier borrowed from the telescope. The signal was transmitted through the east feedhorn (which was not currently in use). Our receiving setup originally consisted of only the HP power meter and the beam at the end of a 200' extension cord. After taking a few readings and seeing the wild fluctuations we quickly decided that a BP filter was needed. The final setup included a 1390-1430MHz BP filter which eliminated our RFI problems caused by a receiver with an effective bandwidth of 10GHz. At the receiving point we rotated the antenna itself, taking measurements from the power meter every 10°. We then plotted the pattern on polar graph paper and came up with a nice looking plot. Now came the time to do "the real thing" and this antenna would be considerably more difficult to rotate than the little 5" Yagi. In order to avoid rotating the feedhorns (which was never considered) we were planning to move the receiving antenna around the feedhorns, at a constant distance, and with an accurate sense of direction. Doing this with the equipment we had took some mathematics and some very complex measuring devices. For distance we used a 410' piece of nylon cord (which was attached to a strain gauge to assure a constant tension). The angles were determined by calculating the correct 5° cord lengths for a circle with a 410' radius. This method worked and proved to be quite accurate as we were later able to verify by using a transit provided to us by Dr. Barnhart. As we began measuring the feedhorn pattern our receiving setup progressed. We decided, however, not to use the Yagi as the receiving antenna, but instead used a horn-type antenna similar to the skyhorn. Our power source progressed from the 200' of extension cord cobbled together from the RO's supply, to the impressive 500' cord from ESL (which, assuming the parabola is still 410' from the feedhorns, is considerably longer than the reported 500'), and finally to a small lead-acid battery hooked up to the inverter lent to us by Steve Willard which was the best, and final source of power. For the first day of readings the horn was simply held above the ground a few feet, which proved less than ideal. So, a way was needed to raise it up high enough to not be affected by the ground plane. The solution came in the form of a forklift- http://www.naapo.org/NAAPO-News/Vol09/v09n08.htm (2 of 14)6/10/2004 12:12:39 PM Signals Volume 09 Number 08 like piece of equipment from ESL which was laying unused around at the RO, which they call a "genie". This enabled us to raise the horn to a grand height of 14.55' (still not in the principal plane, but high enough to not see too much reflection from the ground plane). This setup provided us with a decent portable receiving device, helping us map the far field from 20° west to 20° east (everything on the ground plane). From the measurements we took in the first 25 weeks we were able to plot the antenna patterns for both the east and west feedhorns from 20° E to 20° W. We also measured 25' distanced on the 0° line in order to determine where the far-field pattern began. It was calculated that the west feedhorn is more sensitive than the east by about 1dB, and that the far field begins at appr. 275'. The remaining week and a half was spent trying to figure out how to do something useful in the field, since time was quickly running out. This proved considerably more difficult than our measurements on the ground plane before. In order to get true measurements we needed to be in the principal plane of the antenna, which in the center of the parabola is at 35'. We also needed to needed to be at a height higher than 14.55' when we went off the ground plane to measure the patterns in the field. Erecting a structure 35' high, which is stable, wind resistant, and portable is not an easy task. We went through several iterations starting with 3 sections of 10' aluminum mast with the 2 element Yagi (modified to be essentially a 3 element Yagi by the addition of a reflector made out of an old high voltage sign). This structure proved to be quite unstable and was never used for measurements. The second structure concerned the genie used for the original measurements with a section of 10' mast attached to it, along with the addition of a discone antenna because the Yagi had proved to be too directional for a true field probing. In order to make this structure more portable it was clamped to an old 2 wheel trailer which was lying around, bringing the total height to about 27'. Upon taking this device into the field and taking some measurements we found nothing. The needle on the meter never budged. The sidelobes were less than -75dB which is the range of the meter. On the next day we had a preamp ready to use with the system. When we brought the system into the field we found that we could see a signal (with an extra 35dB of amplification), but that it varied too much because of the antenna swaying in the wind due to the instability of the structure. We now had one last option; we built "The Thing". The Thing consisted of a base of 4 12' 2x4's, with some support sections and 4 swivel wheels on the bottom to make it semi-portable. The tripod was bolted to The Thing, with 30' of the steel telescoping mast provided for us by Dr. Dixon. The mast was guyed in eight places to the ends of the 4 2x4's (which were layed out in a configuration similar to that of a railroad crossing). The Thing is stable, tall, and amazingly enough, is even portable. Unfortunately, The Thing was completed too late for us to really have a chance to use it much. We were able to see that it should be stable enough to use for measurements, but that was all really. A few more guys wouldn't hurt either. Over the past month we have had a lot of fun and have learned quite a bit. We would like to especially thank Steve Brown & Russ Childers for working with us and teaching us throughout the summer. The teaching we have received will not fall on deaf ears, we promise! We would also like to thank Dr. Barnhart and all of NAAPO for giving us the opportunity to come here this summer and for providing us with experiences that will last a lifetime. Sincerely and with all appreciation; Chris Slack & Malinda McKay. http://www.naapo.org/NAAPO-News/Vol09/v09n08.htm (3 of 14)6/10/2004 12:12:39 PM Signals Volume 09 Number 08 HRMS Quarterly Report - June 1993 By: Ron Baalke Organization: Jet Propulsion Laboratory Forwarded from the HRMS Project NASA HIGH RESOLUTION MICROWAVE SURVEY TARGETED SEARCH AND SKY SURVEY STATUS QUARTERLY REPORT JUNE 1993 BACKGROUND The High Resolution Microwave Survey (HRMS) is part of the Toward Other Planetary Systems (TOPS) program in NASA's Solar System Exploration Division. The HRMS searches for evidence of planets orbiting other stars through radio emissions that may be produced by technological civilizations. The HRMS has two search modes, a Sky Survey and a Targeted Search. The Sky Survey is managed by the Jet Propulsion Laboratory and uses 34-meter antennas in NASA's Deep Space Network to sweep the entire sky over a wide range of frequencies for the presence of strong signals. The Targeted Search uses the largest available radio telescopes to observe nearby Sun-like stars over a narrower range of frequencies for weak signals. The Targeted Search is managed by NASA's Ames Research Center, which is also the lead center for the HRMS. The combination of the two search modes is millions of times more comprehensive than the sum of all previous search programs.
Recommended publications
  • One Hundred Sixth Congress of the United States of America
    H. R. 1654 One Hundred Sixth Congress of the United States of America AT THE SECOND SESSION Begun and held at the City of Washington on Monday, the twenty-fourth day of January, two thousand An Act To authorize appropriations for the National Aeronautics and Space Administration for fiscal years 2000, 2001, and 2002, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE; TABLE OF CONTENTS. (a) SHORT TITLE.ÐThis Act may be cited as the ``National Aeronautics and Space Administration Authorization Act of 2000''. (b) TABLE OF CONTENTS.ÐThe table of contents for this Act is as follows: Sec. 1. Short title; table of contents. Sec. 2. Findings. Sec. 3. Definitions. TITLE IÐAUTHORIZATION OF APPROPRIATIONS Subtitle AÐAuthorizations Sec. 101. Human space flight. Sec. 102. Science, aeronautics, and technology. Sec. 103. Mission support. Sec. 104. Inspector general. Sec. 105. Total authorization. Subtitle BÐLimitations and Special Authority Sec. 121. Use of funds for construction. Sec. 122. Availability of appropriated amounts. Sec. 123. Reprogramming for construction of facilities. Sec. 124. Use of funds for scientific consultations or extraordinary expenses. Sec. 125. Earth science limitation. Sec. 126. Competitiveness and international cooperation. Sec. 127. Trans-Hab. Sec. 128. Consolidated space operations contract. TITLE IIÐINTERNATIONAL SPACE STATION Sec. 201. International Space Station contingency plan. Sec. 202. Cost limitation for the International Space Station. Sec. 203. Research on International Space Station. Sec. 204. Space station commercial development demonstration program. Sec. 205. Space station research utilization and commercialization management.
    [Show full text]
  • ESA Strategy for Science at the Moon
    ESA UNCLASSIFIED - Releasable to the Public ESA Strategy for Science at the Moon ESA UNCLASSIFIED - Releasable to the Public EXECUTIVE SUMMARY A new era of space exploration is beginning, with multiple international and private sector actors engaged and with the Moon as its cornerstone. This renaissance in lunar exploration will offer new opportunities for science across a multitude of disciplines from planetary geology to astronomy and astrobiology whilst preparing the knowledge humanity will need to explore further into the Solar System. Recent missions and new analyses of samples retrieved during Apollo have transformed our understanding of the Moon and the science that can be performed there. We now understand the scientific importance of further exploration of the Moon to understand the origins and evolution of Earth and the cosmic context of life’s emergence on Earth and our future in space. ESA’s priorities for scientific activities at the Moon in the next ten years are: • Analysis of new and diverse samples from the Moon. • Detection and characterisation of polar water ice and other lunar volatiles. • Deployment of geophysical instruments and the build up a global geophysical network. • Identification and characterisation of potential resources for future exploration. • Deployment long wavelength radio astronomy receivers on the lunar far side. • Characterisation of the dynamic dust, charge and plasma environment. • Characterisation of biological sensitivity to the lunar environment. ESA UNCLASSIFIED - Releasable to the Public
    [Show full text]
  • Cosmic Study on Space Traffic Management
    Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA) in charge of the governing policy. Any opinion, findings and conclusions or recommendations expressed in this report are those of the International Academy of Astronautics and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home pages at www.iaaweb.org. Copyright 2005 by the International Academy of Astronaut- ics. All rights reserved. The International Academy of Astronautics (IAA) a non governmental organization recognized by the United Nations was founded in 1960. Since that time, IAA has brought together the world's foremost experts (1216) in the disciplines of astronautics on a regular basis to recognize the accomplishments of their peers, to explore and discuss cutting-edge issues in space research and technology, and to provide direction and guidance in the non-military uses of space and the ongoing exploration of the solar sys- tem. The purposes of the IAA, as stated in the Academy's statutes are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in a branch of science or technology related to astronautics, to provide a program through which the mem- bership can contribute to international endeavors and cooperation in the advancement of aerospace science, in cooperation with national
    [Show full text]
  • Legal Aspects of Commercial Activities in the Field of Manned Space Flights
    Legal aspects of commercial activities in the field of manned space flights Mr. Igor POROKHIN, Managing Partner, InSpace Consulting Law Firm (Russia) INSPACE November 13 Bonn 2018 Commercial activities in manned space First visible example – contract between NASA and Russian Space Agency for flights of Shuttle to Russian Mir station (1993). Strong boost made by the ISS Program: enhancement of commercial use of outer space is one of the objectives of the ISS (Article 1 of Intergovernmental Agreement of 1998). Commercial services and deliveries support the governmental scientific and technological goals. INSPACE 2 What has been purchased and sold? ISS resources and supplies like crew time, habitation services, extravehicular capacity, waste removal services. Delivery to the ISS, rescue and return to Earth of professional astronauts and spaceflight participants. Delivery to the ISS and return of cargo to Earth. Space advertising. Implementation of ISS-related scientific experiments, both ground and onboard. INSPACE 3 Figures and Facts To the ISS onboard the Russian “Soyuz” under commercial contracts - more than 70 professional astronauts from at least 13 countries and 8 space tourists. To the ISS onboard the U.S. commercial space cargo vehicles Dragon and Sygnus - supplies to support the activities of the ISS crewmembers from Canada, European Union, USA and Japan. Near future - start of manned flights to the ISS of US commercial space vehicles: SpaceX’s Crew Dragon and Boeing’s CST-100 Starliner. INSPACE 4 Spaceflight Participants The ISS Crew Criteria Document provides for two types of crew members: (1) professional astronauts/cosmonauts and (2) spaceflight participants (SFPs). Professional astronauts/cosmonauts - members of the astronaut or cosmonaut corps of space agencies of the ISS Partners.
    [Show full text]
  • Space Activities
    A/AC.105/705 A/CONF.184/BP/16 Office for Outer Space Affairs United Nations Office at Vienna Space Activities of the International Organizations A review of the activities and resources of the United Nations, its specialized agencies and other international bodies relating to the peaceful uses of outer space UNITED NATIONS New York, 1999 UNITED NATIONS PUBLICATION Sales No. E.99.1.24 ISBN 92-1-100821-2 Foreword Since the beginning of the space age, over 40 years ago, humanity has made significant progress in the development and use of space science and technology to address human needs. Many satellites have been placed in orbit and now provide daily data that are used for forecasting the Earth's weather and management of natural resources and disasters, as well as for environmental monitoring. Other satellites provide communication linkages that have greatly enhanced economic and social development while bringing countries closer together. Many challenges remain, however. Unsustainable patterns of production and consumption are putting increasing pressure on the Earth's environment. The physical interaction mechanisms among oceans, land, atmosphere and solar radiation are not fully understood. Natural disasters cause damage totalling billions of dollars and significantly set back development programmes. Large segments of the world population, in particular in rural areas of developing countries, are in need of education and health services. Improved space capabilities and international cooperation could assist in dealing with those and other important issues, thus promoting economic and social progress. Recognizing the need for constructing a practical, well-defined framework for future international cooperation in space activities, the United Nations decided to convene a Third Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE HI), to be held in Vienna from 19 to 30 July 1999.
    [Show full text]
  • Introduction
    INTRODUCTION This publication consists of 11 selected papers from workshops organized by the United Nations Office for Outer Space Affairs, within the framework of the Programme on Space Applications in 2004. The Programme on Space Applications was established in 1971, with one of its main objectives to further general knowledge and experiences in the field of space technology between developed and developing countries. The Programme organizes around ten workshops, seminars and training courses on an annual basis for students and professionals from developing countries with the aim of increasing local capabilities in space technologies, thus helping to promote the peaceful use of outer space, in accordance with United Nations goals and principles. These activities bring together professionals from developed and developing countries and allow for an exchange of information in several space-related fields, including telecommunications, remote sensing and satellite applications, global environment and land resources management and international space regulations. This volume of “Seminars of the United Nations Programme on Space Applications” is the sixteenth publication in an annual series that began in 1989. The selected papers discuss a variety of science policy issues and are published in the language of submission. -iii- CONTENTS Introduction ............................................................................................................iii I. Application-based themes Space-based Data: Between Pure Science and Down-to-Earth
    [Show full text]
  • TITLE 51—NATIONAL and COMMERCIAL SPACE PROGRAMS This Title Was Enacted by Pub
    (Release Point 115-30) TITLE 51—NATIONAL AND COMMERCIAL SPACE PROGRAMS This title was enacted by Pub. L. 111–314, §3, Dec. 18, 2010, 124 Stat. 3328 Subtitle I—General Chap. Sec. 101. Definitions 10101 Subtitle II—General Program and Policy Provisions 201. National Aeronautics and Space Program 20101 203. Responsibilities and Vision 20301 Subtitle III—Administrative Provisions 301. Appropriations, Budgets, and Accounting 30101 303. Contracting and Procurement 30301 305. Management and Review 30501 307. International Cooperation and Competition 30701 309. Awards 30901 311. Safety 31101 313. Healthcare 31301 315. Miscellaneous 31501 Subtitle IV—Aeronautics and Space Research and Education 401. Aeronautics 40101 403. National Space Grant College and Fellowship Program 40301 405. Biomedical Research in Space 40501 407. Environmentally Friendly Aircraft 40701 409. Miscellaneous 40901 Subtitle V—Programs Targeting Commercial Opportunities 501. Space Commerce 50101 503. Commercial Reusable In-Space Transportation 50301 505. Commercial Space Competitiveness 50501 507. Office of Space Commerce 50701 509. Commercial Space Launch Activities 50901 511. Space Transportation Infrastructure Matching Grants 51101 513. Space resource commercial exploration and utilization 1 51301 Subtitle VI—Earth Observations 601. Land Remote Sensing Policy 60101 603. Remote Sensing 60301 605. Earth Science 60501 Subtitle VII—Access to Space 701. Use of space launch system or alternatives 2 70101 [703. Repealed.] 705. Exploration Initiatives 70501 707. Human Space Flight Independent Investigation Commission 70701 709. International Space Station 70901 711. Near-Earth Objects 71101 713. Cooperation for Safety Among Spacefaring Nations 71301 AMENDMENTS 2017—Pub. L. 115–10, title IV, §416(b), Mar. 21, 2017, 131 Stat. 35, struck out item for chapter 703 "Shuttle Pricing Policy for Commercial and Foreign Users".
    [Show full text]
  • PUBLIC LAW 106-391—OCT. 30, 2000 114 STAT. 1577 Public Law
    PUBLIC LAW 106-391—OCT. 30, 2000 114 STAT. 1577 Public Law 106-391 106th Congress An Act To authorize appropriations for the National Aeronautics and Space Administration Oct. 30, 2000 for fiscal years 2000, 2001, and 2002, and for other ptirposes. [H.R. 1654] Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, National Aeronautics and SECTION 1. SHORT TITLE; TABLE OF CONTENTS. Space (a) SHORT TITLE.—This Act may be cited as the "National AuSSlSon" Aeronautics and Space Administration Authorization Act of 2000". Act of 2000 (b) TABLE OF CONTENTS.—The table of contents for this Act is as follows: Sec. 1. Short title; table of contents. Sec. 2. Findings. Sec. 3. Definitions. TITLE I—AUTHORIZATION OF APPROPRIATIONS Subtitle A—^Authorizations Sec. 101. Human space flight. Sec. 102. Science, aeronautics, and technology. Sec. 103. Mission support. Sec. 104. Inspector general. Sec. 105. Total authorization. Subtitle B—Limitations and Special Authority Sec. 121. Use of funds for construction. Sec. 122. Availability of appropriated amounts. Sec. 123. Reprogramming for construction of facilities. Sec. 124. Use of funds for scientific consultations or extraordinary expenses. Sec. 125. Earth science Umitation. Sec. 126. Competitiveness and international cooperation. Sec. 127. Trans-Hab. Sec. 128. Consolidated space operations contract. TITLE II—INTERNATIONAL SPACE STATION Sec. 201. International Space Station contingency plan. Sec. 202. Cost Umitation for the International Space Station. Sec. 203. Research on International Space Station. Sec. 204. Space station commercial development demonstration program. Sec. 205. Space station research utilization and commercialization management. TITLE III—MISCELLANEOUS Sec.
    [Show full text]
  • Suborbital Reusable Vehicles: a 10-Year Forecast of Market Demand
    Suborbital Reusable Vehicles: A 10-Year Forecast of Market Demand This study was jointly funded by the Federal Aviation Administration Office of Commercial Space Transportation and Space Florida. Suborbital Reusable Vehicles: A 10-Year Forecast of Market Demand Table of Contents Executive Summary .................................................................... 1 Suborbital Reusable Vehicles: A 10-Year Forecast of Market Demand . 9 Purpose of the Forecast . 10 Methodology . 10 Suborbital Reusable Vehicles . 13 Market Analysis . 17 Suborbital Reusable Vehicle Markets . 18 Commercial Human Spaceflight . 21 Basic and Applied Research . 37 Aerospace Technology Test and Demonstration . .49 Media and Public Relations . 55 Education . 61 Satellite Deployment . 69 Remote Sensing . 75 Point-to-Point Transportation . 79 Forecast . 83 Demand by Market . 84 Demand by Type of User . 86 Type of SRV Payload . 88 Revenue . 88 Summary of Major Uncertainties . 89 Limited Awareness of SRVs . 90 Conclusion . 91 i The Tauri Group List of Figures Figure 1: SRV market definitions . .2 Figure 2: Total SRV forecast by market and scenario . 4 Figure 3: Possible trends over time -- Individual demand for Commercial Human Spaceflight . .4 Figure 4: Price elasticity of suborbital tickets for individuals with $5M in investable assets . .5 Figure 5: Enterprise demand and individual demand in baseline case . 6 Figure 6: Enterprise demand by type of payload . 6 Figure 7: Enterprise demand by type of user . 6 Figure 8: Possible reservations trend to meet forecasted demand . .7 Figure 9: 10-year SRV demand forecast . 9 Figure 10: SRV Markets . 11 Figure 11: Forecast process . 13 Figure 12: Status of SRVs . 16 Figure 13: SRV market definitions . 20 Figure 14: Affluent travelers identified a suborbital flight as a trip of a lifetime .
    [Show full text]
  • Report of the Committee on the Peaceful Uses of Outer Space
    A/57/20 United Nations Report of the Committee on the Peaceful Uses of Outer Space General Assembly Official Records Fifty-seventh session Supplement No. 20 (A/57/20) General Assembly Official Records Fifty-seventh session Supplement No. 20 (A/57/20) Report of the Committee on the Peaceful Uses of Outer Space United Nations • New York, 2002 Note Symbols of United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. ISSN 0255-1144 Contents Chapter Paragraphs Page I. Introduction ......................................................... 1-16 1 A. Meetings of subsidiary bodies ...................................... 1-3 1 B. Adoption of the agenda ........................................... 41 C. Membership..................................................... 51 D. Attendance...................................................... 6-10 2 E. General statements ............................................... 11-15 2 F. Adoption of the report of the Committee ............................. 16 2 II. Recommendations and decisions ........................................ 17-215 3 A. Ways and means of maintaining outer space for peaceful purposes ........ 17-35 3 B. Implementation of the recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) ................................................. 36-47 5 C. Report of the Scientific and Technical Subcommittee on its thirty-ninth session ........................................................
    [Show full text]
  • 1 the Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage
    1 The Effect on the Lunar Exosphere of a Coroual Mass Ejection Passage 2 3 R.M. Killen, 1,3 D. M. Hurley2,3 ,and W. M. Farrell,I.3 4 5 ! Planetary Magnetospheres Branch 6 NASA Goddard Space Flight Center 7 Greenbelt, MD 20771 B 2 The lohns Hopkins University Applied Physics Laboratory 9 11100 Johns Hopkins Road 10 Laurel. MD 20723-6099 11 'NASA Lunar Science Institute 12 NASA Ames Research Center 13 Moffett Field, CA 94035 14 15 16 17 18 19 20 In preparation for j. Geophys, Res, Planets 21 SSLAM special issue 22 Oct. 10,2011 23 24 25 26 27 Pages: 62 28 Figures: 5 29 Tables: 10 30 index Terms: 6250, 0328 31 2 31 Running Head: Effect of CME on the Lunar Exosphere 32 33 Corresponding Author: 34 35 Dr. Rosemary Killen 36 Planetary Magnetospheres Branch 37 Goddard Space Flight Center 38 Greenhelt, MD 20771 39 [email protected] 40 301-286-6574 41 3 41 Abstract 42 43 Solar wind bombardment onto exposed surfaces in the solar system produces an energetic 44 component to the exospheres about those bodies. The solar wind energy and composition 45 are highly dependent on the origin of the plasma. Using the measured composition of the 46 slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection 47 (CME), broken down into their various components, we have estimated the total sputter 48 yield for each type of solar wind. We show that the heavy ion component, especially the 49 He++ and 0+7 can greatly enhance the total sputter yield during times when the heavy ion 50 population is enhanced.
    [Show full text]
  • Hr843-Xxx.Ps
    106TH CONGRESS REPORT "! 2d Session HOUSE OF REPRESENTATIVES 106±843 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AUTHORIZATION ACT OF 2000 SEPTEMBER 12, 2000.ÐOrdered to be printed Mr. SENSENBRENNER, from the committee of conference, submitted the following CONFERENCE REPORT [To accompany H.R. 1654] The committee of conference on the disagreeing votes of the two Houses on the amendment of the Senate to the bill (H.R. 1654), to authorize appropriations for the National Aeronautics and Space Administration for fiscal years 2000, 2001, and 2002, and for other purposes, having met, after full and free conference, have agreed to recommend and do recommend to their respective Houses as follows: That the House recede from its disagreement to the amend- ment of the Senate and agree to the same with an amendment as follows: In lieu of the matter proposed to be inserted by the Senate amendment, insert the following: SECTION 1. SHORT TITLE; TABLE OF CONTENTS. (a) SHORT TITLE.ÐThis Act may be cited as the ``National Aero- nautics and Space Administration Authorization Act of 2000''. (b) TABLE OF CONTENTS.Ð Sec. 1. Short title; table of contents. Sec. 2. Findings. Sec. 3. Definitions. TITLE IÐAUTHORIZATION OF APPROPRIATIONS Subtitle AÐAuthorizations Sec. 101. Human space flight. Sec. 102. Science, aeronautics, and technology. Sec. 103. Mission support. Sec. 104. Inspector general. Sec. 105. Total authorization. Subtitle BÐLimitations and Special Authority Sec. 121. Use of funds for construction. Sec. 122. Availability of appropriated amounts. 79±006 VerDate 11-MAY-2000 07:17 Sep 13, 2000 Jkt 079006 PO 00000 Frm 00001 Fmt 6659 Sfmt 6613 E:\HR\OC\HR843.XXX pfrm04 PsN: HR843 2 Sec.
    [Show full text]