Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

Total Page:16

File Type:pdf, Size:1020Kb

Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams In cooperation with the New Jersey Department of Environmental Protection Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams Scientific Investigations Report 2007-5206 U.S. Department of the Interior U.S. Geological Survey Cover. Dunnfield Creek in the Delaware Water Gap National Recreation Area, Warren County, New Jersey. Photograph by Jason Lewis, U.S. Geological Survey. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams By Jonathan G. Kennen, James A. Henriksen, and Steven P. Nieswand In cooperation with the New Jersey Department of Environmental Protection Scientific Investigations Report 2007-5206 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Kennen, J.G., Henriksen, J.A., and Nieswand, S.P., 2007, Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams: U.S. Geological Survey Scientific Investiga- tions Report 2007-5206, 55 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Background............................................................................................................................................2 Purpose and scope ...............................................................................................................................2 Study area description .........................................................................................................................2 Technical Advisory Committee Activities .........................................................................................4 Comparison of 10 Environmental Flow Methods ....................................................................5 Examination of Two Environmental Flow Methods ................................................................5 Development of the Hydroecological Integrity Assessment Process ..................................................9 Conceptualization .................................................................................................................................9 Software .................................................................................................................................................9 Methods................................................................................................................................................10 Hydrologic Index Tool ................................................................................................................10 Stream Classification Processes ............................................................................................10 Selection of Streams and Period of Record .................................................................12 Clustering of Streams .......................................................................................................12 Development of the New Jersey Stream Classification Tool (NJSCT) ....................13 Application of the Hydroecological Integrity Assessment Process ...................................................13 Establishing a Hydrologic Baseline .................................................................................................14 Examples of New Jersey Hydroecological Assessment Tool (NJHAT) Application ...............15 Example A....................................................................................................................................15 Example B....................................................................................................................................19 Developing Environmental Flow Standards ............................................................................................24 Summary and Conclusions .........................................................................................................................25 Acknowledgments .......................................................................................................................................25 References Cited..........................................................................................................................................25 Appendix 1. Members of the Technical Advisory Committee ...........................................................29 Appendix 2. Review of seminal ecological concepts .........................................................................30 Appendix 3. Distinctive characteristics of the four stream classes in New Jersey .....................37 Appendix 4. Stream class and characteristics of gaging stations representing relatively unimpaired basins used to classify New Jersey streams .......................................................38 Appendix 5. Verification results for the 171 hydrologic indices .......................................................40 Appendix 6. Hydrologic indices with the largest absolute loading for each of the statistically significant principal component axes for each stream type in the nine sub-components of the flow regime ...........................................................................................47 Appendix 7. Definitions of the 171 hydrologic indices. ......................................................................48 iv Figures 1. Maps showing location of physiographic regions and streamflow sites used to classify the primary stream classes in New Jersey ..........................................................3 2. Graph showing time series of daily flow, minimum flow, and 25th- and 75th-percentile flow ranges for the South Branch Raritan River (USGS station 01396500), New Jersey, with flows for three environmental flow methods: Aquatic Base Flow (ABF), Range of Variation Approach (RVA), and 7-day, 10-year low flow (7Q10) ...............8 3. Diagram showing steps taken to develop and apply the Hydroecological Integrity Assessment Process (HIP) ..........................................................................................................9 4–19. Graphs showing— 4. Monthly maximum daily mean streamflow for time periods before and after regionalization of a wastewater facility, water years 1964–2003 ..............................15 5. Monthly mean streamflow for time periods before and after regionalization of a wastewater facility, water years 1964–2003..........................................................16 6. Monthly minimum daily mean streamflow for time periods before and after regionalization of a wastewater facility, water years 1964–2003 ..............................16 7. Maximum monthly streamflow for time periods before and after regionalization of a wastewater facility, water years 1964–2003..........................................................17 8. Median monthly streamflows for time periods before and after regionalization of a wastewater facility, water years 1964–2003..........................................................18 9. Minimum monthly streamflows for time periods before and after regionalization of a wastewater facility, water years 1964–2003..........................................................18 10. The calculated value and the 25th- and 75th-percentile values of selected hydrologic indices pre- and post-regionalization ........................................................19 11. Monthly maximum daily mean streamflow for water years 1924–2003 ....................19 12. Monthly mean streamflow for water years 1924–2003................................................19 13. Monthly minimum daily mean streamflow for water years 1924–2003 .....................19 14. Hydrograph showing two diversion scenarios with baseline daily flow conditions for water year 2000 (diversions of 5 and 50 ft3 with an environmental passing flow of 25 ft3) .............................................................................20 15. Hydrograph showing two diversion scenarios with baseline daily flow conditions for water year 2000 (diversions of 25 and 50 ft3 with environmental passing flows of 25 and 10 ft3, respectively) .................................................................21 16. Maximum monthly flows for four flow-diversion scenarios for water years 1924–2003 ......................................................................................................21 17. Median monthly flows for four flow-diversion scenarios
Recommended publications
  • Ecosystem Flow Recommendations for the Delaware River Basin
    Ecosystem Flow Recommendations for the Delaware River Basin Report to the Delaware River Basin Commission Upper Delaware River © George Gress Submitted by The Nature Conservancy December 2013 THE NATURE CONSERVANCY Ecosystem Flow Recommendations for the Delaware River Basin December 2013 Report prepared by The Nature Conservancy Michele DePhilip Tara Moberg The Nature Conservancy 2101 N. Front St Building #1, Suite 200 Harrisburg, PA 17110 Phone: (717) 232‐6001 E‐mail: Michele DePhilip, [email protected] Suggested citation: DePhilip, M. and T. Moberg. 2013. Ecosystem flow recommendations for the Delaware River basin. The Nature Conservancy. Harrisburg, PA. Table of Contents Acknowledgments ................................................................................................................................. iii Project Summary ................................................................................................................................... iv Section 1: Introduction ........................................................................................................................ 1 1.1 Project Description and Goals ............................................................................................... 1 1.2 Project Approach ........................................................................................................................ 2 Section 2: Project Area and Basin Characteristics .................................................................... 6 2.1 Project Area .................................................................................................................................
    [Show full text]
  • Catskill Trails, 9Th Edition, 2010
    Harriman-Bear Mountain Trails, 13th Edition, 2010 New York-New Jersey Trail Conference Index Feature Map (119BM = Bear Mtn Inset) 1777 E Trail 119, 119BM 1777 W Trail 119, 119BM 1779 Trail 119, 119BM Abrams Road 119 ADK Camp Nawakwa 118 Agony Grind 119 Almost Perpendicular 118 American Canoe Association Camp 118 Anchor Monument 119 Anthony Wayne Recreation Area 119 Anthony Wayne Trail 119 Anthonys Nose 119 Appalachian Trail 119, 119BM Arden 119 Arden Brook 119 Arden House 119 Arden Road 119 Arden Valley Road 119 Arden-Surebridge Trail 118, 119 Augusta Mine 118 Baileytown Cemetery 119 Baileytown Road 119 Baker Camp 118 Bald Mountain 118, 119 Bald Rocks Shelter 118, 119 Barnes Lake 119 Barnes Mine 118 Bear Mountain 119, 119BM Bear Mountain Administration Building 119BM Bear Mountain Bridge 119, 119BM Bear Mountain Bridge Road 119 Bear Mountain Dock 119BM Bear Mountain Historical Museum 119BM Bear Mountain Inn 119BM Bear Mountain Merry-Go-Round 119BM Bear Mountain Picnic Area 119BM Bear Mountain Skating Rink 119BM Bear Mountain State Park 119, 119BM Bear Mountain Swimming Pool 119BM Bear Mountain Trailside Museums and Zoo 119BM Beaver Pond Brook 118 Beaver Pond Campground 118, 119 p1 Beech Trail 118, 119 Beech Trail Cemetery 118, 119 Beechy Bottom Road 119 Bensons Point 119 Big Bog Mountain 119 Big Hill 118 Big Hill Shelter 118 Black Ash Mine 118 Black Ash Mountain 118 Black Ash Swamp 118 Black Mountain 119 Black Rock 118, 119 Black Rock Mountain 118, 119 Blauvelt Mountain 118 Blendale Lake 119 Blue Disc Trail 118 Blythea Lake 119 Bockberg
    [Show full text]
  • To Middle Silurian) in Eastern Pennsylvania
    The Shawangunk Formation (Upper OrdovicianC?) to Middle Silurian) in Eastern Pennsylvania GEOLOGICAL SURVEY PROFESSIONAL PAPER 744 Work done in cooperation with the Pennsylvania Depa rtm ent of Enviro nm ental Resources^ Bureau of Topographic and Geological Survey The Shawangunk Formation (Upper Ordovician (?) to Middle Silurian) in Eastern Pennsylvania By JACK B. EPSTEIN and ANITA G. EPSTEIN GEOLOGICAL SURVEY PROFESSIONAL PAPER 744 Work done in cooperation with the Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geological Survey Statigraphy, petrography, sedimentology, and a discussion of the age of a lower Paleozoic fluvial and transitional marine clastic sequence in eastern Pennsylvania UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-189667 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 65 cents (paper cover) Stock Number 2401-2098 CONTENTS Page Abstract _____________________________________________ 1 Introduction __________________________________________ 1 Shawangunk Formation ___________________________________ 1 Weiders Member __________ ________________________ 2 Minsi Member ___________________________________ 5 Lizard Creek Member _________________________________ 7 Tammany Member _______________________________-_ 12 Age of the Shawangunk Formation _______ __________-___ 14 Depositional environments and paleogeography _______________ 16 Measured sections ______________________________________ 23 References cited ________________________________________ 42 ILLUSTRATIONS Page FIGURE 1. Generalized geologic map showing outcrop belt of the Shawangunk Formation in eastern Pennsylvania and northwestern New Jersey ___________________-_ 3 2. Stratigraphic section of the Shawangunk Formation in the report area ___ 3 3-21. Photographs showing 3. Conglomerate and quartzite, Weiders Member, Lehigh Gap ____ 4 4.
    [Show full text]
  • Drainage Patterns
    Drainage Patterns Over time, a stream system achieves a particular drainage pattern to its network of stream channels and tributaries as determined by local geologic factors. Drainage patterns or nets are classified on the basis of their form and texture. Their shape or pattern develops in response to the local topography and Figure 1 Aerial photo illustrating subsurface geology. Drainage channels develop where surface dendritic pattern in Gila County, AZ. runoff is enhanced and earth materials provide the least Courtesy USGS resistance to erosion. The texture is governed by soil infiltration, and the volume of water available in a given period of time to enter the surface. If the soil has only a moderate infiltration capacity and a small amount of precipitation strikes the surface over a given period of time, the water will likely soak in rather than evaporate away. If a large amount of water strikes the surface then more water will evaporate, soaks into the surface, or ponds on level ground. On sloping surfaces this excess water will runoff. Fewer drainage channels will develop where the surface is flat and the soil infiltration is high because the water will soak into the surface. The fewer number of channels, the coarser will be the drainage pattern. Dendritic drainage pattern A dendritic drainage pattern is the most common form and looks like the branching pattern of tree roots. It develops in regions underlain by homogeneous material. That is, the subsurface geology has a similar resistance to weathering so there is no apparent control over the direction the tributaries take.
    [Show full text]
  • Drainage Basin Morphology in the Central Coast Range of Oregon
    AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months.
    [Show full text]
  • The Water' Cycle
    'I ." Name'~~_~__-,,__....,......,....,......, ~ Class --,-_......,...._------,__ Date ....,......,-.:-_ ..: .•..'-' .. M.ODERN EARTH SCIENCE Section 1s.i The Water' Cycle • Read each statement below. If the statement .ls true, write T in the space provided. If the statement is false, write Fin tbe space provided. -'- 1. The hydrologic cycle is also called the water cycle. 2. Most water evaporating from the earth's surface evaporates from rivers and lakes. 3. When water vapor rises in the atmosphere, it expands and cools. 4. Evapotranspiration increases with increasing temperature. 5. Most water used by industry is recycled. 6. Irrigation is often necessary in areas having high evapotranspiration. Cboose the one best response. Write tbe letter of tbat cboice in tbe space provided. 7. Which of the following is an artificial means of producing fresh water from ocean water? .--i a. desalination b. saltation • c. evapotranspiration d. condensation 8. Which of the following is represented by this diagram? a. the earth's water budget b. local water budget . c. groundwater movement -·d. surface runoff 9. The arrow labeled X represents: a. absorption. b. evaporation.. c. rejuvenation. d. transpiration. _ 10. Approximately what percentage of the earth's precipitation falls-on the ocean? a. 5% b. 25% c. 750/0 d. 99% t • Chapter 13 47 l H_R_w_..._"_ter"_:_al_....._p_yrighted undernotice appearing earlier in thisworic. .'. Name _ Class _ Date -­ MODERN EARTH SCIENCE .... '''; ... .secti~n'· if2 River Systems Choose the one best response. Write the letter of that choice in the space provided. 1. What is the term for the main stream and tributaries of a river? a.
    [Show full text]
  • Water Resources of the New Jersey Part of the Ramapo River Basin
    Water Resources of the New Jersey Part of the Ramapo River Basin GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1974 Prepared in cooperation with the New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Water Resources of the New Jersey Part of the Ramapo River Basin By JOHN VECCHIOLI and E. G. MILLER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1974 Prepared in cooperation with the New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600358 For sale bv the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $2.20 Stock Number 2401-02417 CONTENTS Page Abstract.................................................................................................................. 1 Introduction............................................................................................ ............ 2 Purpose and scope of report.............................................................. 2 Acknowledgments.......................................................................................... 3 Previous studies............................................................................................. 3 Geography...................................................................................................... 4 Geology
    [Show full text]
  • How the Gap Formed
    Delaware Water Gap National Recreation Area How the Gap formed What is a water gap? Several words in the English language The Delaware Water Gap is justly famous for denote a “break” or “cleft” in the moun- its depth, width, and scenic beauty. The Gap tains. Chasm and notch are popular in New is a mile wide from New Jersey’s Mount England; pass and gorge in the South and Tammany (1,527 feet) to Pennsylvania’s West of the United States. Gap is especially Mount Minsi (1,463 feet.) The Gap is about common in this part of the country. 1,200 feet deep from the tops of these mountains to the surface of the river, which A gap or wind gap is a break or pass through at this point is 290 feet above sea level. The the mountains, in this case the Appalachian maximum depth of the river at the Gap is Mountains. A water gap is a pass that a river about 55 feet. runs through. How does a gap form? Geology is the study of the earth’s forma- Starting with Native American legend, there tion. Though the geologist’s time frame may have been many ideas about how the seem vast and remote, the results of Delaware Water Gap formed. One current geological processes are the mountains we theory explains the Gap through a series of hike on, the river we swim in, and the processes: continental shift (involving plate scenery we admire. tectonics), mountain building (orogeny), erosion, and the “capturing” of rivers and streams.
    [Show full text]
  • Delaware Water Gap National Recreation Area: Outstanding Basin Waters
    Delaware Water Gap National Recreation Area: Outstanding Basin Waters Delaware River Basin Commission Page 122 2502 ICP Delaware River at DWGNRA Northern Boundary Delaware River Basin Commission Page 123 2502 ICP Delaware River at DWGNRA Northern Boundary Latitude 41.343611 Longitude -74.757778 by GPS NAD83 decimal degrees. No nearby USGS or State monitoring sites Watershed Population figures were not calculated for main-stem Delaware River sites. Drainage Area: 3,420 square miles, Delaware River Zone 1C Site Specific EWQ defined 2006-2011 by the DRBC/NPS Scenic Rivers Monitoring Program. This site is located at the Delaware Water Gap National Recreation Area northern boundary Classified by DRBC as Significant Resource Waters (Outstanding Basin Waters downstream of this location) Nearest upstream Interstate Control Point: 2547 ICP Delaware River at Port Jervis Nearest downstream Interstate Control Point: 2464 ICP Delaware River at Montague Known dischargers within watershed: Undefined Tributaries to upstream reach: Major tributary 2536 BCP Neversink River, NY; small tributary 250.8 Rosetown Creek, PA. No Stream Stats web site data available (drainage area too large to calculate on web site). Flow Statistics (calculated by drainage area weighting from Port Jervis USGS gage data): Max Flow 90% Flow 75% 60% 50% 40% 25% Flow 10% Flow (CFS) Min (CFS) (CFS) Flow Flow Flow Flow (CFS) Flow (CFS) (CFS) (CFS) (CFS) (CFS) 172,966 12,088 6,752 4,531 3,587 2,860 2,074 1,720 884 Delaware River Basin Commission Page 124 Existing Water Quality: 2502 ICP
    [Show full text]
  • Inventory of Published and Unpublished Sediment-Load Data, United States and Puerto Rico, 1950 60
    Inventory of Published and Unpublished Sediment-Load Data, United States and Puerto Rico, 1950 60 Compiled by K. F. HARRIS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1547 Prepared in cooperation with the Sub- committee on Sedimentation, Inter- Agency Committee on Heater R sources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. PREFACE This report supplements Bulletin No. I, "Inventory of published and Unpublished Sediment Load Data in the United States," published in April 1949 and Bulletin No. 4, "Inventory of Published and Un­ published Sediment Load Data in the United States, Supplement- 1946 to 1950," published in April 1952. These bulletins were pub­ lished under the sponsorship of the Subcommittee on Sedimenta­ tion, Federal Inter-Agency River Basin Committee (predecessor to the Inter-Agency Committee on Water Resources). The following agencies participating on the Subcommittee on Sedimentation, Inter-Agency Committee on Water Resources, fur­ nished records of published and unpublished data obtained by their various offices for this inventory: Department of Agriculture Department of the Interior Agricultural Research Bureau of Mines Service Bureau of Reclamation Forest Service Geological Survey Soil Conservation Service Department of Health, Education, Department of the Army and Welfare Corps of Engineers Public Health
    [Show full text]
  • Modeling of Wind Gap Formation and Development of Sedimentary Basins
    Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran Marine Collignon, Philippe Yamato, Sébastien Castelltort, Boris Kaus To cite this version: Marine Collignon, Philippe Yamato, Sébastien Castelltort, Boris Kaus. Modeling of wind gap forma- tion and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran. Earth Surface Processes and Landforms, Wiley, 2016, 41 (11), pp.1521-1535. 10.1002/esp.3921. insu-01358818 HAL Id: insu-01358818 https://hal-insu.archives-ouvertes.fr/insu-01358818 Submitted on 2 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran. M.Collignon1,2, P.Yamato3, S.Castelltort4, B.J.P.Kaus5 1. Geological Institute, ETH Zurich, Switzerland. 2. Now at Centre for Earth Evolution and Dynamics (CEED), Postbox 1028 Blindern, 0315 Oslo, Norway. 3. Géosciences Rennes, Université de Rennes 1, CNRS, UMR 6118, Cedex 35042, France. 4. Département des Sciences de la Terre, Rue des Maraîchers 13, 1205 Geneva, Switzerland. 5.
    [Show full text]
  • Delaware Water Gap National Recreation Area
    CULTURAL RESOURCE MANAGEMENT CRM VOLUME 25 NO. 3 2002 tie u^m Delaware Water Gap National Recreation Area National Park Service U.S. Department of the Interior Cultural Resources PUBLISHED BY THE CRM magazine's 25th anniversary year NATIONAL PARK SERVICE VOLUME 25 NO. 3 2002 Information for parks, Federal agencies, Contents ISSN 1068-4999 Indian tribes, States, local governments, and the private sector that promotes and maintains high standards for pre­ Saved from the Dam serving and managing cultural resources In the Beginning 3 Upper Delaware Valley Cottages— Thomas E. Solon A Simple Regional Dwelling Form . .27 DIRECTOR Kenneth F. Sandri Fran R Mainella From "Wreck-reation" to Recreation Area— Camp Staff Breathes New Life ASSOCIATE DIRECTOR CULTURAL RESOURCE STEWARDSHIP A Superintendent's Perspective 4 into Old Cabin 29 AND PARTNERSHIPS Bill Laitner Chuck Evertz and Katherine H. Stevenson Larry J. Smotroff In-Tocks-icated—The Tocks Island MANAGING EDITOR Dam Project 5 Preserving and Interpreting Historic John Robbins Richard C. Albert Houses—VIPs Show the Way 31 EDITOR Leonard R. Peck Sue Waldron "The Minisink"—A Chronicle of the Upper Delaware Valley 7 Yesterday and Today—Planting ASSOCIATE EDITOR Dennis Bertland for Tomorrow 33 Janice C. McCoy Larry Hilaire GUEST EDITOR Saving a Few, Before Losing Them All— Thomas E. Solon A Strategy for Setting Priorities 9 Searching for the Old Mine Road ... .35 Zehra Osman Alicia C. Batko ADVISORS David Andrews Countrysides Lost and Found— Bit by Bit—Curation in a National Editor, NPS Joan Bacharach Discovering Cultural Landscapes 14 Recreation Area 36 Curator, NPS Hugh C.
    [Show full text]