Senegalese Grasshopper

Total Page:16

File Type:pdf, Size:1020Kb

Senegalese Grasshopper DY NAMAC COrF ORATION Final Technical Report Results of the Mali Pesticide Testing Trials Against the Senegalese Grasshopper USAID Contract No. AFR-0517-C-O-7035-00 July 1988 Prepared by: Dynarnac Corporaiion The Dynamac Building 11140 Rockville Pike Rockville, MD 20352 Inassociation with: Consortium for Intematicnal Crop Protection 4321 Hartwi-k Road, Suite 404 College Paik, MD 20740 Prepared for: U.S. Agency ior International Duv:lopment African Gra-,'hopper/Locust Psi cide Testing Project I 'II I - 3 . July 1988 FINAL TECHNICAL REPORT RESULTS OF THE MALI PESTICIDE TESTING TRIALS AGAINST THE SENEGALESE GRASSHOPPER USAID Contract No. AFR-0517-C-O0-7035-00 Prepared by: Dynamac Corporation The Dynamac Building 11140 Rockville Pike Rockville, MD 20852 In association with: Consortium for International Crop Protection 4321 Hartwick Road, Suite 404 College Park, MD 20740 Prepared for: U.S. Agency for International Development %frican Grasshopper/Locust Pesticide Testing Project EXECUTIVE SUMMARY During the months of August and September 1987, Dynamac Corporation, un contract to USAID, conducted field trials to test for the efficacy environmental impacts of eight pesticides used to control the Senegal grasshopper, Oedaleus senegalensis: bendicicarb, carbaryl, chlorpyrif diazinon, fenitrothion, lambda-cyhalothrin, malathion, and tralomethrin. study site consisted of 60 km2 of typical Sahelian grassland near Nara northwestern Mali. Early successional grasses, ranging from 20 to 70 cm height, and scattered combretaceous shrubs characterized the landscape. T populations consisting of 63 to 95% adult Oedaleus senegalensis were trea at a mean density of 0.5 grasshoppers/m 2 . All materials were applied ultra-low-volume (ULV) rates using TurboThrush S2RTs equipped with Micron, AUSO00 units. A set of preliminary trials was conducted to assure tl adequate deposition was occurring and that the expected efficacy was be achieved with the reference chemicals fenitrothion and malathion. In Phase a randomized design of thirty-six 12-ha plots was used to determine efficacies and gross environmental impacts of the eight pesticides. Phase I trials, which were designed to test more thoroughly for environmental effects of four of these pesticides, fifteen 100-ha plots t1 encompassed a range of habitats including maturing crops were selected. All materials were applied at the lower of two rates originally chosen I the test. Preliminary trials were conducted to assure that proper drop size (100 to 150 microns), uniform coverage (narrow 40-m swaths), accuri metering (repeated prespray calibration), and plot inteyrity (150-m bufl zones) were obtained. During both phases, two flagging cars and minir flying heights (3 to 5 m) were used to obtain precise application to the t( plots. The sprays were conducted during the favorable environmeni conditions of the early morning. Oil-sensitive cards and slides were used monitor spray deposition for coverage and drift. The efficacy of the pesticides was determined by conducting grass- hopF counts 1 day before spraying and then 1, 3, 7, and 14 days after spraying. both Phases I and II, two 100- by 2-m transects were searct iii 2 for live grasshoppers. Originally, forty 0.1 m ring counts and visualized square meter counts were used to quantify grasshopper nymphs. However, when the population reached the adult stage, 100-m transect counts, as well as the visualized square meter counts, were used. In Phase I, all eight pesticides provided 80% or greater reduction of the grasshopper numbers by 1 day posttreatment. At day 3, the synthetic pyrethroids showed significantly less reduction than five of the materials, but this was possibly attributable to rain on the day they were sprayed. Carbaryl was the only material that showed an increase in control over the first week. Four pesticides -- malathion, chlorpyrifos, -carbaryl, and lambda-cyhalothrin -- were selected for inclusion in Phase II trials based on efficacy and a desire to test a range of chemical types. In contrast to Phase I, a substantial portion (27%) of the grasshopper fauna in Phase II consisted of sp-cies other than Oedaleus senegalensis. The four pesticides exhibited approximately 70% or better control through the 7-day sample in both grassland and cropland. Lambda-cyhalothrin showed a significantly greater reduction of grasshopper numbers in both habitats at the 1-day counts. The sampling for beneficial and nontarget insects utilized several counting and capture techniques to describe the affected fauna and to identify potential indicator species. Sweep-netting and malaise-trapping proved to be ineffective in collecting adequate numbers of insects. Pitfall traps collected large numbers of ground-dwelling beetles, but no significant treatment effect was discernible because of declining control levels. Sticky traps also collected substantial numbers of insects (principally small diptera and hymenoptera), but again, both the treatment and control numbers were too variable for an assessment of effects. Visual searches for live and dead insects sampled the widest range of taxa, but the numbers from this sampling program were too small to demonstrate differences among treatments. The harvester ant (Messor sp.) proved to be the best indicator species due to its abundance, wide distribution, and conspicuous activity. In both Phase I and Phase II, posttreatment counts of dead ants revealed substantial mortality as a result of several pesticides. Malathion-treated plots contained the greatest number of dead ants in both phases, and lambda-cyhalothrin plots iv had few dead ants. Greater replication is recommended for the visual transect, sticky trap, and pitfall trap methods. We conclude that the assessment of impacts on indicator species, such as ants, is the most productive technique, and that the collection of millet heads would likely be a valuable method for analysis of the impact on important pest and beneficial species. Carcass searches, conducted over a combined area of 700,000 m2 for both phases, revealed no dead or injured vertebrate animals in either phase. At the same time, normal behavior was observed among 1569 live birds counted during 96 transect runs. Although 4' e bird numbers were highly variable, reduced activity in chlorpyrifos-treated plots was discernible from the analysis of transect counts. In addition, moderate brain cholinesterase depression was observed in carbaryl-exposed birds. The numbers of other vertebrates were too low for an assessment of numerical charges, hut rodents, birds, lizards, and frogs were collected from test ploLs and shown to possess relatively low pesticide residue levels. An analysis of samples of surface water, soils, forage grasses, and grain crops appears to demonstrate that residues declined to negligible levels within 7 days. No phytotoxicity was observed among the collected material or in visual surveys of the test plots. A detailed survey of the vegetation and ecosystem components of the test site did not identify any especially vulnerable habitats associated with the areas of grasshopper control. However, the rare Sahelian aquatic habitats (not present in the test area) should be given special consideration in general control programs. The conclusions of this report are that all eight pesticides proved to be efficacious against the Senegalese grasshopper and that no dramatic environmental impacts were seen. The degree of differences in the impact on nontarget insects has not been determined, but differences in the selectivity of the pesticides appear to exist. We recommend that pesticide control strategies consider using low rates of pesticides (shown to be efficacious in this study), with specific monitoring for impacts on selected beneficial insects. v CONTENTS Page EXECUTIVE SUMMARY ......... ...................... ii LIST OF FIGURES .......... ......................... xii LIST OF TABLES ........... .......................... xiv PREFACE .......... ............................. ... xvii 1. INTRODUCTION........... .......................... 1-1 1.1 BACKGROUND ........... ........................ 1-1 1.2 OBJECTIVE ........ ......................... .I... 1-2 1.3 PESTICIDE SELECTION ...... .................... .I... 1-3 1.4 PROJECT CHRONOLOGY ...... .................... .I...1-8 2. ECOLOGICAL DESCRIPTION OF THE SITE .... ............... ... 2-1 2.1 CLIMATIC AND PHYSIOGRAPHIC REGION...... ............. 2-1 2.2 SOIL AND VEGETATION ZONE ..... ................. .... 2-1 2.3 FAUNA......... ........................... .... 2-2 2.4 AGRICULTURAL AND GRAZING USAGE ...... ............. ... 2-3 3. PRELIMINARY SURVEYS AND TESTING ........ ................ 3-1 3.1 SITE SELECTION ....... ...................... .... 3-1 3.2 GRASSHOPPER POPULATIONS ...... ................ ... 3-2 3.2.1 SAMPLING METHODS ..... .................. ... 3-2 3.3 PRELIMINARY TRIAL PLOT DESIGN .... ............... ... 3-4 3.4 PRELIMINARY TRIAL PESTICIDE APPLICATION............. ... 3-6 3.4.1 MATERIALS .......... ..................... 3-6 3.4.2 APPLICATION EQUIPMENT .... ............... .... 3-6 3.4.3 APPLICATION ...... .................... .... 3-6 vii CONTENTS (continued) 3.5 PRELIMINARY TRIAL EFFICACY EVALUATIONS ................ 3-9 3.5.1 METHODS ........... ...................... 3-9 3.5.2 RESULTS AND DISCUSSION.... ............... ... 3-9 3.6 TESTS OF APPLICATION METHODOLOGY ... ................. 3-9 3.6.1 REINVASION OF PLOTS ........ ................ 3-9 3.6.2 DROPLET SIZE...... .................... ... 3-11 3.6.3 SPRAY COVERAGE ...... ..................
Recommended publications
  • Download?Doi=10.1.1.446.8608Andrep=Rep1andtype=Pdf Du Sol Du Burkina Faso
    ORIGINAL RESEARCH published: 22 April 2021 doi: 10.3389/fsufs.2021.632624 Assessment of Livestock Water Productivity in Seno and Yatenga Provinces of Burkina Faso Tunde Adegoke Amole 1*, Adetayo Adekeye 1 and Augustine Abioye Ayantunde 2 1 International Livestock Research Institute, Ibadan, Nigeria, 2 International Livestock Research Institute, Dakar, Senegal The expected increase in livestock production to meet its increasing demand could lead to increased water depletion through feeds production. This study aimed at estimating the amount of water depletion through feeds and its corresponding productivity in livestock within the three dominant livestock management systems namely sedentary-intensive, sedentary-extensive, and transhumance in Yatenga and Seno provinces in the Sahelian zone of Burkina Faso. Using a participatory rapid appraisal and individual interview, beneficial animal products, and services were estimated, and consequently, livestock water productivity (LWP) as the ratio of livestock products and services to the amount of water depleted. Our results showed feed resources are mainly natural pasture and crop residues are common in all the management Edited by: Yaosheng Wang, systems though the proportion of each feed type in the feed basket and seasonal Chinese Academy of Agricultural preferences varied. Consequently, water depleted for feed production was similar across Sciences, China the systems in both provinces and ranged from 2,500 to 3,200 m−3 ha−1 yr−1. Values Reviewed by: Katrien Descheemaeker, for milk (40 US$US$/household) and flock offtake (313 US$/household) derived from Wageningen University and the transhumant system were higher (P < 0.05) than those from other systems in the Research, Netherlands Seno province.
    [Show full text]
  • And Wildlife, 1928-72
    Bibliography of Research Publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72 UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF SPORT FISHERIES AND WILDLIFE RESOURCE PUBLICATION 120 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 Edited by Paul H. Eschmeyer, Division of Fishery Research Van T. Harris, Division of Wildlife Research Resource Publication 120 Published by the Bureau of Sport Fisheries and Wildlife Washington, B.C. 1974 Library of Congress Cataloging in Publication Data Eschmeyer, Paul Henry, 1916 Bibliography of research publications of the U.S. Bureau of Sport Fisheries and Wildlife, 1928-72. (Bureau of Sport Fisheries and Wildlife. Kesource publication 120) Supt. of Docs. no.: 1.49.66:120 1. Fishes Bibliography. 2. Game and game-birds Bibliography. 3. Fish-culture Bibliography. 4. Fishery management Bibliogra­ phy. 5. Wildlife management Bibliography. I. Harris, Van Thomas, 1915- joint author. II. United States. Bureau of Sport Fisheries and Wildlife. III. Title. IV. Series: United States Bureau of Sport Fisheries and Wildlife. Resource publication 120. S914.A3 no. 120 [Z7996.F5] 639'.9'08s [016.639*9] 74-8411 For sale by the Superintendent of Documents, U.S. Government Printing OfTie Washington, D.C. Price $2.30 Stock Number 2410-00366 BIBLIOGRAPHY OF RESEARCH PUBLICATIONS OF THE U.S. BUREAU OF SPORT FISHERIES AND WILDLIFE, 1928-72 INTRODUCTION This bibliography comprises publications in fishery and wildlife research au­ thored or coauthored by research scientists of the Bureau of Sport Fisheries and Wildlife and certain predecessor agencies. Separate lists, arranged alphabetically by author, are given for each of 17 fishery research and 6 wildlife research labora­ tories, stations, investigations, or centers.
    [Show full text]
  • Modeling Gas Exchange and Biomass Production in West African Sahelian and Sudanian Ecological Zones
    Geosci. Model Dev., 14, 3789–3812, 2021 https://doi.org/10.5194/gmd-14-3789-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones Jaber Rahimi1, Expedit Evariste Ago2,3, Augustine Ayantunde4, Sina Berger1,5, Jan Bogaert3, Klaus Butterbach-Bahl1,6, Bernard Cappelaere7, Jean-Martial Cohard8, Jérôme Demarty7, Abdoul Aziz Diouf9, Ulrike Falk10, Edwin Haas1, Pierre Hiernaux11,12, David Kraus1, Olivier Roupsard13,14,15, Clemens Scheer1, Amit Kumar Srivastava16, Torbern Tagesson17,18, and Rüdiger Grote1 1Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany 2Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou, Benin 3Biodiversity and Landscape Unit, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium 4International Livestock Research Institute (ILRI), Ouagadougou, Burkina Faso 5Regional Climate and Hydrology Research Group, University of Augsburg, Augsburg, Germany 6International Livestock Research Institute (ILRI), Nairobi, Kenya 7HydroSciences Montpellier, Université Montpellier, IRD, CNRS, Montpellier, France 8IRD, CNRS, Université Grenoble Alpes, Grenoble, France 9Centre de Suivi Ecologique (CSE), Dakar, Senegal 10Satellite-based Climate Monitoring, Deutscher Wetterdienst (DWD), Offenbach, Germany 11Géosciences Environnement Toulouse
    [Show full text]
  • Guidelines to the Use of Wild Birds in Research
    THE ORNITHOLOGICAL COUNCIL Providing Scientific Information about Birds GUIDELINES TO THE USE OF WILD BIRDS IN RESEARCH Special Publication 1997 Edited by Abbot S. Gaunt & Lewis W. Oring Third Edition 2010 Edited by Jeanne M. Fair, Editor-in-Chief Ellen Paul & Jason Jones, Associate Editors GUIDELINES TO THE USE OF WILD BIRDS IN RESEARCH Jeanne M. Fair1, Ellen Paul2, & Jason Jones3, Anne Barrett Clark4, Clara Davie4, Gary Kaiser5 1 Los Alamos National Laboratory, Atmospheric, Climate and Environmental Dynamics, MS J495, Los Alamos, NM 87506 2 Ornithological Council, 1107 17th St., N.W., Suite 250, Washington, D.C. 20036 3 Tetra Tech EC, 133 Federal Street, 6th floor, Boston, Massachusetts 02110 4 Binghamton University State University of New York, Department of Biology, PO BOX 6000 Binghamton, NY 13902-6000 5 402-3255 Glasgow Ave, Victoria, BC V8X 4S4, Canada Copyright 1997, 2010 by THE ORNITHOLOGICAL COUNCIL 1107 17th Street, N.W. Suite 250 Washington, D.C. 20036 http://www.nmnh.si.edu/BIRDNET Suggested citation Fair, J., E. Paul, and J. Jones, Eds. 2010. Guidelines to the Use of Wild Birds in Research. Washington, D.C.: Ornithological Council. Revision date August 2010 2 Dedication The Ornithological Council dedicates this 2010 revision to Lewis W. Oring and the late Abbot (Toby) S. Gaunt, whose commitment to the well-being of the birds for whom ornithologists share a deep and abiding concern has served our profession well for so many years. Toby Gaunt Lew Oring Revision date August 2010 3 Acknowledgments and disclaimer Third edition The Ornithological Council thanks the Office of Laboratory Animal Welfare of the National Institutes of Health for their financial support for the production of this revision.
    [Show full text]
  • 503 Flora V7 2.Doc 3
    Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price
    [Show full text]
  • AN EVALUATION of TECHNIQUES for CAPTURING RAPTORS in EAST-CENTRAL MINNESOTA by Mark R
    AN EVALUATION OF TECHNIQUES FOR CAPTURING RAPTORS IN EAST-CENTRAL MINNESOTA by Mark R. Fuller and Glenn S. Christenson Department of Ecologyand BehavioralBiology University of Minnesota 310 Biological SciencesCenter St. Paul, Minnesota 55108 ABSTRACT. To meet the objectivesof a study,several species of raptorshad to be trapped on a 9,880-hectare study area of heterogenoushabitat types. Bal-chatri,mist net, Swedish Goshawk,and automatic bow-net traps (and combinationsof these traps) were used in severalgeneral habitat situations.Mist nets combined with a baited bal-chatri or tethered bait were most successfulin capturingbirds, and the bal-chatrisalone and mist nets alone were next most effective. Trappingwas found to be most productivein deciduousupland habitats where an openingin the canopy or break in the understoryoccurred. Trapping along a woodlot-fieldedge was also effective. Strigiformeswere most often trappedjust before sunriseor just after sunset,while falconiformeswere most often capturedin the late morning and late afternoon. Trapping was least efficient from Decemberto February. A different trap type from that i•sedin the initial captureis often most effectivefor recaptur- ing raptors.Maintenance of healthybait animalsand frequent trap checksare emphasized. Introduction This paperpresents results from a combinationof methodsused to captureand recapture Great HornedOwls (Bubo virginianus), Barred Owls (Strix varia),Red-tailed Hawks (Buteo }amaicensis),and Broad-wingedHawks (Buteo platypterus) on a 9,880-hectarestudy area in east-central
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • Filed Techniques-Bats
    Expedition Field Techniques BATS Kate Barlow Geography Outdoors: the centre supporting field research, exploration and outdoor learning Royal Geographical Society with IBG 1 Kensington Gore London SW7 2AR Tel +44 (0)20 7591 3030 Fax +44 (0)20 7591 3031 Email [email protected] Website www.rgs.org/go October 1999 ISBN 978-0-907649-82-3 Cover illustration: A Noctilio leporinus mist-netted during an expedition, FFI Montserrat Biodiversity Project 1995, by Dave Fawcett. Courtesy of Kate Jones, and taken from the cover of her thesis entitled ‘Evolution of bat life histories’, University of Surrey. Expedition Field Techniques BATS CONTENTS Acknowledgements Preface Section One: Bats and Fieldwork 1 1.1 Introduction 1 1.2 Literature Reviews 3 1.3 Licences 3 1.4 Health and Safety 4 1.4.1 Hazards associated with bats 5 1.5 Ethics 6 1.6 Project Planning 6 Section Two: Capture Techniques 8 2.1 Introduction 8 2.2 Catching bats 8 2.2.1 Mist-nets 8 2.2.2 Mist-net placement 10 2.2.3 Harp-traps 12 2.2.4 Harp-trap placement 13 2.2.5 Comparison of mist-net and harp-traps 13 2.2.6 Hand-netting for bats 14 2.3 Sampling for bats 14 Section Three: Survey Techniques 18 3.1 Introduction 18 3.2 Surveys at roosts 18 3.2.1 Emergence counts 18 3.2.2 Roost counts 19 3.3 Population estimates 20 Expedition Field Techniques Section Four: Processing Bats 22 4.1 Handling bats 22 4.1.1 Removing bats from mist-nets 22 4.1.2 Handling bats 24 4.2 Assessment of age and reproductive status 25 4.3 Measuring bats 26 4.4 Identification 28 4.5 Data recording 29 Section Five: Specimen Preparation
    [Show full text]
  • Identification of Invasive Alien Species Using DNA Barcodes
    Identification of Invasive Alien Species using DNA barcodes Royal Belgian Institute of Natural Sciences Royal Museum for Central Africa Rue Vautier 29, Leuvensesteenweg 13, 1000 Brussels , Belgium 3080 Tervuren, Belgium +32 (0)2 627 41 23 +32 (0)2 769 58 54 General introduction to this factsheet The Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo) aims at developing an expertise forum to facilitate the identification of biological samples of policy concern in Belgium and Europe. The project represents part of the Belgian federal contribution to the European Research Infrastructure Consortium LifeWatch. Non-native species which are being introduced into Europe, whether by accident or deliberately, can be of policy concern since some of them can reproduce and disperse rapidly in a new territory, establish viable populations and even outcompete native species. As a consequence of their presence, natural and managed ecosystems can be disrupted, crops and livestock affected, and vector-borne diseases or parasites might be introduced, impacting human health and socio-economic activities. Non-native species causing such adverse effects are called Invasive Alien Species (IAS). In order to protect native biodiversity and ecosystems, and to mitigate the potential impact on human health and socio-economic activities, the issue of IAS is tackled in Europe by EU Regulation 1143/2014 of the European Parliament and Council. The IAS Regulation provides for a set of measures to be taken across all member states. The list of Invasive Alien Species of Union Concern is regularly updated. In order to implement the proposed actions, however, methods for accurate species identification are required when suspicious biological material is encountered.
    [Show full text]
  • Bill Baggs Cape Florida State Park
    Wekiva River Basin State Parks Approved Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks October 2017 TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................2 PURPOSE AND SCOPE OF THE PLAN..................................................... 7 MANAGEMENT PROGRAM OVERVIEW ................................................... 9 Management Authority and Responsibility .............................................. 9 Park Management Goals ...................................................................... 9 Management Coordination ................................................................. 10 Public Participation ............................................................................ 10 Other Designations ........................................................................... 10 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 13 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 19 Natural Resources ............................................................................. 19 Topography .................................................................................. 19 Geology ......................................................................................
    [Show full text]
  • Common Edible Plants of Africa
    Domesticates Geographical Distribution Morphology/Description Common, edible fruits Oil Palm Tropical Africa, cannot tolerate full A tree. The oil palm is now one of the most economically Elaeis guineensis shade, but prefers disturbed important palms in Africa. It has a walnut-size fruit habitats5 clustered in big pods, with a fibrous pulp rich in oil (which is rich in energy, fatty acids, and a great source of Vitamin West African origins, but has 6, A). Within the husk is a hard-shelled seed containing an spread throughout tropical Africa edible kernel (eaten by chimps and people). (The sap is tapped to make palm wine too.) The species still grows wild, as well as being cultivated and planted by people. The wild form growing in the Ituri Forest in the Congo, provides 9% of the total caloric intake for the Efe pygimies, for example (Bailey and Peacock 1988, McGrew 1992). Okra Savanna, full sun areas Possible originated in East Africa6 Hibiscus esculentus5 Melon Continent Wild varieties of this melon still grow in many arid and Citrullus lanatus5 semi-arid regions of the continent. They are smaller, and more bitter/toxic than the domestic versions. Gourd Tropical Africa Lagenaria siceraria7 Desert Date Dry regions of the continent Scrambling shrub. Fruits are 1-2 inches long, with fibrous, Balanites aegyptiaca oily flesh and large seed. Baobab Widespread in south-central Africa Large tree with huge trunk. Dry, fleshy pods 8-10 inches Adansonia digitata in semi arid regions long containing numerous seeds P380: Common edible plants of Africa - 1 - Horned melon, wild cucumber Widespread in Savannas Wild varieties of cucumis, the cucumber genus, grow Cucumis (many species) widely as spreading vines on the ground in savanna regions.
    [Show full text]
  • Screening of Entomopathogenic Fungi Against Citrus Mealybug (Planococcus Citri (Risso)) and Citrus Thrips (Scirtothrips Aurantii (Faure))
    Screening of entomopathogenic fungi against citrus mealybug (Planococcus citri (Risso)) and citrus thrips (Scirtothrips aurantii (Faure)) A thesis submitted in the fulfilment of the requirements for the degree of: Master of Science of Rhodes University by Véronique Chartier FitzGerald February 2014 1 Abstract Mealybugs (Planococcus citri) and thrips (Scirtothrips aurantii) are common and extremely damag- ing citrus crop pests which have proven difficult to control via conventional methods, such as chemical pesticides and insect growth regulators. The objective of this study was to determine the efficacy of entomopathogenic fungi against these pests in laboratory bioassays. Isolates of Metarhizium aniso- pliae and Beauveria bassiana from citrus orchards in the Eastern Cape, South Africa were main- tained on Sabouraud Dextrose 4% Agar supplemented with Dodine, chloramphenicol and rifampicin at 25°C. Infectivity of the fungal isolates was initially assessed using 5th instar false codling moth, Thaumatotibia leucotreta, larvae. Mealybug bioassays were performed in 24 well plates using 1 x 107 ml-1 conidial suspensions and kept at 26°C for 5 days with a photoperiod of 12 L:12 D. A Beauveria commercial product and an un-inoculated control were also screened for comparison. Isolates GAR 17 B3 (B. bassiana) and FCM AR 23 B3 (M. anisopliae) both resulted in 67.5% mealybug crawler mortality and GB AR 23 13 3 (B. bassiana) resulted in 64% crawler mortality. These 3 isolates were further tested in dose-dependent assays. Probit analyses were conducted on the dose-dependent as- says data using PROBAN to determine LC50 values. For both the mealybug adult and crawlers FCM 6 -1 AR 23 B3 required the lowest concentration to achieve LC50 at 4.96 x 10 conidia ml and 5.29 x 105 conidia ml-1, respectively.
    [Show full text]