Introduction to X64 Assembly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2. Assembly Language Assembly Language Is a Programming Language That Is Very Similar to Machine Language, but Uses Symbols Instead of Binary Numbers
2. Assembly Language Assembly Language is a programming language that is very similar to machine language, but uses symbols instead of binary numbers. It is converted by the assembler into executable machine- language programs. Assembly language is machine-dependent; an assembly program can only be executed on a particular machine. 2.1 Introduction to Assembly Language Tools Practical assembly language programs can, in general, be written using one of the two following methods: 1- The full-segment definition form 2- The simplified segment definition form In both methods, the source program includes two types of instructions: real instructions, and pseudo instructions. Real instructions such as MOV and ADD are the actual instructions that are translated by the assembler into machine code for execution by the CPU. Pseudo instructions, on the other hand, don’t generate machine code and are only used to give directions to the assembler about how it should translate the assembly language instructions into machine code. The assembler program converts the written assembly language file (called source file) into machine code file (called object file). Another program, known as the linker, converts the object file into an executable file for practical run. It also generates a special file called the map file which is used to get the offset addresses of the segments in the main assembly program as shown in figure 1. Other tools needed in assembling coding include a debugger, and an editor as shown in figure 2 Figure 2. Program Development Procedure There are several commercial assemblers available like the Microsoft Macro Assembler (MASM), and the Borland Turbo Assembler (TASM). -
NASM – the Netwide Assembler
NASM – The Netwide Assembler version 2.14rc7 © 1996−2017 The NASM Development Team — All Rights Reserved This document is redistributable under the license given in the file "LICENSE" distributed in the NASM archive. Contents Chapter 1: Introduction . 17 1.1 What Is NASM?. 17 1.1.1 License Conditions . 17 Chapter 2: Running NASM . 19 2.1 NASM Command−Line Syntax . 19 2.1.1 The −o Option: Specifying the Output File Name . 19 2.1.2 The −f Option: Specifying the Output File Format . 20 2.1.3 The −l Option: Generating a Listing File . 20 2.1.4 The −M Option: Generate Makefile Dependencies. 20 2.1.5 The −MG Option: Generate Makefile Dependencies . 20 2.1.6 The −MF Option: Set Makefile Dependency File. 20 2.1.7 The −MD Option: Assemble and Generate Dependencies . 20 2.1.8 The −MT Option: Dependency Target Name . 21 2.1.9 The −MQ Option: Dependency Target Name (Quoted) . 21 2.1.10 The −MP Option: Emit phony targets . 21 2.1.11 The −MW Option: Watcom Make quoting style . 21 2.1.12 The −F Option: Selecting a Debug Information Format . 21 2.1.13 The −g Option: Enabling Debug Information. 21 2.1.14 The −X Option: Selecting an Error Reporting Format . 21 2.1.15 The −Z Option: Send Errors to a File. 22 2.1.16 The −s Option: Send Errors to stdout ..........................22 2.1.17 The −i Option: Include File Search Directories . 22 2.1.18 The −p Option: Pre−Include a File . 22 2.1.19 The −d Option: Pre−Define a Macro . -
Asmc Macro Assembler Reference Asmc Macro Assembler Reference
Asmc Macro Assembler Reference Asmc Macro Assembler Reference This document lists some of the differences between Asmc, JWasm, and Masm. In This Section Asmc Command-Line Option Describes the Asmc command-line option. Asmc Error Messages Describes Asmc fatal and nonfatal error messages and warnings. Asmc Extensions Provides links to topics discussing Masm versus Asmc. Directives Reference Provides links to topics discussing the use of directives in Asmc. Symbols Reference Provides links to topics discussing the use of symbols in Asmc. Change Log | Forum Asmc Macro Assembler Reference Asmc Command-Line Reference Assembles and links one or more assembly-language source files. The command-line options are case sensitive. ASMC [[options]] filename [[ [[options]] filename]] options The options listed in the following table. Set CPU: 0=8086 (default), 1=80186, 2=80286, 3=80386, 4=80486, /[0|1|..|10][p] 5=Pentium,6=PPro,7=P2,8=P3,9=P4,10=x86-64. [p] allows privileged instructions. /assert Generate .assert(code). Same as .assert:on. /bin Generate plain binary file. Push user registers before stack-frame is created in a /Cs proc. /coff Generate COFF format object file. /Cp Preserves case of all user identifiers. /Cu Maps all identifiers to upper case (default). Link switch used with /pe -- subsystem:console /cui (default). /Cx Preserves case in public and extern symbols. Defines a text macro with the given name. If value is /Dsymbol[[=value]] missing, it is blank. Multiple tokens separated by spaces must be enclosed in quotation marks. /enumber Set error limit number. /elf Generate 32-bit ELF object file. /elf64 Generate 64-bit ELF object file. -
NASM — the Netwide Assembler Version 2.09.04
NASM — The Netwide Assembler version 2.09.04 -~~..~:#;L .-:#;L,.- .~:#:;.T -~~.~:;. .~:;. E8+U *T +U' *T# .97 *L E8+' *;T' *;, D97 `*L .97 '*L "T;E+:, D9 *L *L H7 I# T7 I# "*:. H7 I# I# U: :8 *#+ , :8 T, 79 U: :8 :8 ,#B. .IE, "T;E* .IE, J *+;#:T*" ,#B. .IE, .IE, © 1996−2010 The NASM Development Team — All Rights Reserved This document is redistributable under the license given in the file "LICENSE" distributed in the NASM archive. Contents Chapter 1: Introduction . .15 1.1 What Is NASM? . .15 1.1.1 Why Yet Another Assembler?. .15 1.1.2 License Conditions . .15 1.2 Contact Information . .16 1.3 Installation. .16 1.3.1 Installing NASM under MS−DOS or Windows . .16 1.3.2 Installing NASM under Unix . .17 Chapter 2: Running NASM . .18 2.1 NASM Command−Line Syntax . .18 2.1.1 The −o Option: Specifying the Output File Name . .18 2.1.2 The −f Option: Specifying the Output File Format . .19 2.1.3 The −l Option: Generating a Listing File . .19 2.1.4 The −M Option: Generate Makefile Dependencies . .19 2.1.5 The −MG Option: Generate Makefile Dependencies . .19 2.1.6 The −MF Option: Set Makefile Dependency File . .19 2.1.7 The −MD Option: Assemble and Generate Dependencies. .19 2.1.8 The −MT Option: Dependency Target Name. .20 2.1.9 The −MQ Option: Dependency Target Name (Quoted) . .20 2.1.10 The −MP Option: Emit phony targets. .20 2.1.11 The −F Option: Selecting a Debug Information Format . -
Linux Assembly HOWTO Linux Assembly HOWTO
Linux Assembly HOWTO Linux Assembly HOWTO Table of Contents Linux Assembly HOWTO..................................................................................................................................1 Konstantin Boldyshev and François−René Rideau................................................................................1 1.INTRODUCTION................................................................................................................................1 2.DO YOU NEED ASSEMBLY?...........................................................................................................1 3.ASSEMBLERS.....................................................................................................................................1 4.METAPROGRAMMING/MACROPROCESSING............................................................................2 5.CALLING CONVENTIONS................................................................................................................2 6.QUICK START....................................................................................................................................2 7.RESOURCES.......................................................................................................................................2 1. INTRODUCTION...............................................................................................................................2 1.1 Legal Blurb........................................................................................................................................2 -
Optimizing Subroutines in Assembly Language an Optimization Guide for X86 Platforms
2. Optimizing subroutines in assembly language An optimization guide for x86 platforms By Agner Fog. Copenhagen University College of Engineering. Copyright © 1996 - 2012. Last updated 2012-02-29. Contents 1 Introduction ....................................................................................................................... 4 1.1 Reasons for using assembly code .............................................................................. 5 1.2 Reasons for not using assembly code ........................................................................ 5 1.3 Microprocessors covered by this manual .................................................................... 6 1.4 Operating systems covered by this manual................................................................. 7 2 Before you start................................................................................................................. 7 2.1 Things to decide before you start programming .......................................................... 7 2.2 Make a test strategy.................................................................................................... 9 2.3 Common coding pitfalls............................................................................................. 10 3 The basics of assembly coding........................................................................................ 12 3.1 Assemblers available ................................................................................................ 12 3.2 Register set -
Different Emulators to Write 8086 Assembly Language Programs
Different Emulators to write 8086 assembly language programs Subject: IWM Content • Emu8086 • TASM(Turbo Assembler) • MASM(Microsoft Macro Assembler) • NASM(Netwide Assembler) • FASM(Flat Assembler) Emu8086 • Emu8086 combines an advanced source editor, assembler, disassembler, software emulator with debugger, and step by step tutorials • It permit to assemble, emulate and debug 8086 programs. • This emulator was made for Windows, it works fine on GNU/Linux (with the help of Wine). • The source code is compiled by assembler and then executed on Emulator step-by-step, allowing to watch registers, flags and memory while program runs. how to run program on Emu8086 • Download Emu8086 through this link : https://download.cnet.com/Emu8086-Microprocessor- Emulator/3000-2069_4-10392690.html • Start Emu8086 by running Emu8086.exe • Select “Examples" from "File" menu. • Click “Emulate” button (or press F5). • Click “Single Step” button (or press F8) and watch how the code is being executed. Turbo Assembler(Tasm) • Turbo Assembler (TASM) is a computer assembler developed by Borland which runs on and produces code for 16- or 32-bit x86 DOS or Microsoft Windows. • The Turbo Assembler package is bundled with the Turbo Linker, and is interoperable with the Turbo Debugger. • Turbo Assembler (TASM) a small 16-bit computer program which enables us to write 16 bit i.e. x86 programming code on 32-bit machine. It can be used with any high level language compliers like GCC compiler set to build object files. So that programmers can use their daily routine machines to write 16-bit code and execute on x86 devices. how to run program using TASM • Download TASM through this link : https://techapple.net/2013/01/tasm-windows-7-windows-8-full- screen-64bit-version-single-installer/ • Start TASM by running tasm.exe • It will open DOSBOX. -
Internals of the Netwide Assembler ======
Internals of the Netwide Assembler ================================== The Netwide Assembler is intended to be a modular, re-usable x86 assembler, which can be embedded in other programs, for example as the back end to a compiler. The assembler is composed of modules. The interfaces between them look like: +--- preproc.c ----+ | | +---- parser.c ----+ | | | | float.c | | | +--- assemble.c ---+ | | | nasm.c ---+ insnsa.c +--- nasmlib.c | | +--- listing.c ----+ | | +---- labels.c ----+ | | +--- outform.c ----+ | | +----- *out.c -----+ In other words, each of `preproc.c', `parser.c', `assemble.c', `labels.c', `listing.c', `outform.c' and each of the output format modules `*out.c' are independent modules, which do not directly inter-communicate except through the main program. The Netwide *Disassembler* is not intended to be particularly portable or reusable or anything, however. So I won't bother documenting it here. :-) nasmlib.c --------- This is a library module; it contains simple library routines which may be referenced by all other modules. Among these are a set of wrappers around the standard `malloc' routines, which will report a fatal error if they run out of memory, rather than returning NULL. preproc.c --------- This contains a macro preprocessor, which takes a file name as input and returns a sequence of preprocessed source lines. The only symbol exported from the module is `nasmpp', which is a data structure of type `Preproc', declared in nasm.h. This structure contains pointers to all the functions designed to be callable from outside the module. parser.c -------- This contains a source-line parser. It parses `canonical' assembly source lines, containing some combination of the `label', `opcode', `operand' and `comment' fields: it does not process directives or macros. -
Kafl: Hardware-Assisted Feedback Fuzzing for OS Kernels
kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Sergej Schumilo1, Cornelius Aschermann1, Robert Gawlik1, Sebastian Schinzel2, Thorsten Holz1 1Ruhr-Universität Bochum, 2Münster University of Applied Sciences Motivation IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack OpenSSH redis lua-cmsgpack taglib privoxy perl libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy- html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make -
Lab # 1 Introduction to Assembly Language
Assembly Language LAB Islamic University – Gaza Engineering Faculty Department of Computer Engineering 2013 ECOM 2125: Assembly Language LAB Eng. Ahmed M. Ayash Lab # 1 Introduction to Assembly Language February 11, 2013 Objective: To be familiar with Assembly Language. 1. Introduction: Machine language (computer's native language) is a system of impartible instructions executed directly by a computer's central processing unit (CPU). Instructions consist of binary code: 1s and 0s Machine language can be made directly from java code using interpreter. The difference between compiling and interpreting is as follows. Compiling translates the high-level code into a target language code as a single unit. Interpreting translates the individual steps in a high-level program one at a time rather than the whole program as a single unit. Each step is executed immediately after it is translated. C, C++ code is executed faster than Java code, because they transferred to assembly language before machine language. 1 Using Visual Studio 2012 to convert C++ program to assembly language: - From File menu >> choose new >> then choose project. Or from the start page choose new project. - Then the new project window will appear, - choose visual C++ and win32 console application - The project name is welcome: This is a C++ Program that print "Welcome all to our assembly Lab 2013” 2 To run the project, do the following two steps in order: 1. From build menu choose build Welcome. 2. From debug menu choose start without debugging. The output is To convert C++ code to Assembly code we follow these steps: 1) 2) 3 3) We will find the Assembly code on the project folder we save in (Visual Studio 2012\Projects\Welcome\Welcome\Debug), named as Welcome.asm Part of the code: 2. -
Intel X86 Assembly Language & Microarchitecture
Intel x86 Assembly Language & Microarchitecture #x86 Table of Contents About 1 Chapter 1: Getting started with Intel x86 Assembly Language & Microarchitecture 2 Remarks 2 Examples 2 x86 Assembly Language 2 x86 Linux Hello World Example 3 Chapter 2: Assemblers 6 Examples 6 Microsoft Assembler - MASM 6 Intel Assembler 6 AT&T assembler - as 7 Borland's Turbo Assembler - TASM 7 GNU assembler - gas 7 Netwide Assembler - NASM 8 Yet Another Assembler - YASM 9 Chapter 3: Calling Conventions 10 Remarks 10 Resources 10 Examples 10 32-bit cdecl 10 Parameters 10 Return Value 11 Saved and Clobbered Registers 11 64-bit System V 11 Parameters 11 Return Value 11 Saved and Clobbered Registers 11 32-bit stdcall 12 Parameters 12 Return Value 12 Saved and Clobbered Registers 12 32-bit, cdecl — Dealing with Integers 12 As parameters (8, 16, 32 bits) 12 As parameters (64 bits) 12 As return value 13 32-bit, cdecl — Dealing with Floating Point 14 As parameters (float, double) 14 As parameters (long double) 14 As return value 15 64-bit Windows 15 Parameters 15 Return Value 16 Saved and Clobbered Registers 16 Stack alignment 16 32-bit, cdecl — Dealing with Structs 16 Padding 16 As parameters (pass by reference) 17 As parameters (pass by value) 17 As return value 17 Chapter 4: Control Flow 19 Examples 19 Unconditional jumps 19 Relative near jumps 19 Absolute indirect near jumps 19 Absolute far jumps 19 Absolute indirect far jumps 20 Missing jumps 20 Testing conditions 20 Flags 21 Non-destructive tests 21 Signed and unsigned tests 22 Conditional jumps 22 Synonyms and terminology 22 Equality 22 Greater than 23 Less than 24 Specific flags 24 One more conditional jump (extra one) 25 Test arithmetic relations 25 Unsigned integers 25 Signed integers 26 a_label 26 Synonyms 27 Signed unsigned companion codes 27 Chapter 5: Converting decimal strings to integers 28 Remarks 28 Examples 28 IA-32 assembly, GAS, cdecl calling convention 28 MS-DOS, TASM/MASM function to read a 16-bit unsigned integer 29 Read a 16-bit unsigned integer from input. -
Сравнение Ассемблерных Трансляторов Крис Касперски, Aka Мыщъх, Aka Nezumi, Aka Elrton, Aka Souriz, No E-Mail
сравнение ассемблерных трансляторов крис касперски, aka мыщъх, aka nezumi, aka elrton, aka souriz, no e-mail. проблема выбора "единственного правильного" ассемблерного транслятора мучает не только начинающих, но и профессиональных программистов. у каждого продукта есть своя когорта поклонниках и спор о преимуществах/недостатках рискует превратиться в священные войны с выносом тел погибших. на форумах такие дискуссии лучше не разводить и вещать в одностороннем порядке, как мыщъх, собственно, и поступил, сравнив MASM, TASM, FASM, NASM, YASM и некоторые другие ассемблеры по всему спектру критериев, значимость которых каждый должен оценивать сам введение Компиляторы языков высокого уровня (Си, Паскаль) в определенной степени совместимы между собой и хотя исходный текст, предназначенный для одного компилятора, не всегда без переделок транслируется на другом, синтаксис и прочие языковые концепции остаются неизменными, позволяя "летать" между MS VC, Intel C++, GCC, Open WATCOM, сравнивая полноту поддержки Стандарта, скорость трансляции, качество кодогенерации, популярность компилятора и вытекающее отсюда изобилие (недостаток) библиотек и компонент к нему. С трансляторами ассемблера все обстоит иначе. Казалось бы, x86 ассемблер — он и в Африке ассемблер, так ведь нет! Помимо поддержки мнемоник машинных команд, каждый транслятор обладает своим собственным набором директив и макросредств, зачастую ни с чем не совместимых. Ассемблерный листинг, "заточенный", например, под MASM, бесполезно переносить на FASM, поскольку, _возможности,_ предоставляемые