Proline Catalyzes Direct Aqueous Aldol Reactions of Α-Hydroxy Aldehydes and Ketones
Total Page:16
File Type:pdf, Size:1020Kb
Prebiotic Carbohydrate Synthesis: Zinc-Proline Catalyzes Direct Aqueous Aldol Reactions of α-Hydroxy Aldehydes and Ketones Jacob Kofoed, Jean-Louis Reymond and Tamis Darbre* Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland. Fax: +41 31 631 80 57; Tel : +41 31 631 43 70; E-mail: tamis.darbre@ioc.unibe.ch Supporting Information NMR and GC spectra. tetroses hexoses Figure S1. GC of the peracetylated crude from aldolisation of glycolaldehyde. β-threose α-threose β-erythrose Figure S2. GC of the peracetylated crude sugar mixture showing α-threose, β-threose and β- erythrose (time shown in min). - S 1 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY Integral 1.0000 0.0437 0.6899 0.9642 1.0142 0.3432 3.9561 1.0935 3.3902 1.8681 1.0503 32.517 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 (ppm) 1 Figure S3. H NMR (500 MHz) in CDCl3 of the tetrose acetate mixture showing α-threose, β- threose and β-erythrose. 2539.59 2535.07 2516.25 2511.73 2448.49 2446.73 2426.15 β-threose β-erythrose α-threose Integral 1.0000 0.0437 0.6899 0.9642 6.48 6.44 6.40 6.36 6.32 6.28 6.24 6.20 6.16 6.12 6.08 6.04 6.00 5.96 5.92 (ppm) 1 Figure S3. H NMR (CDCl3, 500 MHz) showing the anomeric protons of acetylated α-threose, β- threose and β-erythrose. - S 2 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY 5.3202 5.3077 5.2945 5.2499 5.2411 5.2330 4.3419 4.3287 4.3237 4.3023 4.2891 4.2829 4.1994 4.1818 4.1586 4.1404 4.0695 4.0500 4.0293 4.0105 2.0877 2.0732 2.0488 2.0456 1597.02 1593.26 1589.30 1575.93 1573.29 1570.84 1221.58 1215.74 1209.53 1203.87 1299.38 1297.88 1291.47 1287.52 1285.63 1260.58 1255.30 1248.33 1242.87 0.8442 1.9841 1.1425 0.8310 1.0905 1.9841 5.30 5.2 4.3 4.2 (ppm) (ppm) (ppm) (ppm) (ppm) Integral 0.8310 1.0905 1.9841 1.1425 0.8442 12.167 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 (ppm) 1 Figure S4. H NMR (CDCl3, 300 MHz) of tetrol peracetates. Commercial L-Threitol tetraacetate Reduced and acetylated tetrol mixture Figure S5. Chiral GC trace of reduced and acetylated tetrols showing the meso-erythritol and the two enantiomers of threitol. - S 3 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY mannose talose gulose galactose altrose talose allose mixture Figure S6. Overlaying of reference sugars and crude mixture from the aldolisation of glycolaldehyde (hexose region). sorbit mannit allitol dulcit talitol mixture Figure S7. Overlaying of reduced reference sugars and crude mixture from the aldolisation of glycolaldehyde (hexose region). - S 4 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY ribose xylose lyxose arabinose mixture Figure S8. Overlaying of reference sugars and crude mixture from the cross-aldolisation of glycolaldehyde and glyceraldehyde. xylit arabit+lyxit adonit mixture Figure S9. Overlaying of reduced reference sugars and crude mixture from the cross-aldolisation of glycolaldehyde and glyceraldehyde. - S 5 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY A B C 5.40 5.30 5.20 5.10 5.00 4.90 4.80 4.70 4.60 4.50 4.40 (ppm) D Figure S11. Overlaying of the four different experiments showing the anomeric region. A: ketohexoses, B: ketopentoses, C: tetroses and hexoses, D: tetroses and pentoses. - S 6 - PRIVILEGED DOCUMENT FOR REVIEW PURPOSES ONLY.