Chapter 6 Carbohydrates Outline 6.1 Classes of Carbohydrates 6.1

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 Carbohydrates Outline 6.1 Classes of Carbohydrates 6.1 2/25/2015 Outline Lecture Presentation • 6.1 Classes of Carbohydrates • 6.2 Functional Groups in Monosaccharides Chapter 6 • 6.3 Stereochemistry in Monosaccharides Carbohydrates • 6.4 Reactions of Monosaccharides • 6.5 Disaccharides • 6.6 Polysaccharides Julie Klare • 6.7 Carbohydrates and Blood Fortis College Smyrna, GA © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.1 Classes of Carbohydrates 6.1 Classes of Carbohydrates • The simplest carbohydrates are • Disaccharides consist of two monosaccharide monosaccharides (mono is Greek for “one,” units joined together. sakkhari is Greek for “sugar”). • A disaccharide can be split into two • These often sweet-tasting sugars cannot be monosaccharide units. Ordinary table sugar, broken down into smaller carbohydrates. sucrose, C12H22O11, is a disaccharide that can be broken up, through hydrolysis, into the • The common carbohydrate glucose, C6H12O6, is a monosaccharide. monosaccharides glucose and fructose. • Monosaccharides contain carbon, hydrogen, • Oligosaccharidesare carbohydrates and oxygen and have the general formula containing three to nine monosaccharide units. The blood-typing groups known as ABO are Cn(H2O)n, where n is a whole number 3 or higher. oligosaccharides. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.1 Classes of Carbohydrates 6.1 Classes of Carbohydrates • When 10 or more monosaccharide units are joined together, the large molecules that result are polysaccharides (poly is Greek for “many”). • The sugar units can be connected in one continuous chain or the chain can be branched. • Starch, a polysaccharide in plants, contains branched chains of glucose that can be broken down to produce energy. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 1 2/25/2015 6.1 Classes of Carbohydrates 6.1 Classes of Carbohydrates FIBER IN YOUR DIET FIBER IN YOUR DIET • Dietary fibers are carbohydrates that we cannot digest • Insoluble fibers do not mix with water, although they with our own enzymes. play a critical role in the digestive tract. • Soluble fiber mixes with water, forming a gel-like • Insoluble fiber has a laxative effect and adds bulk to the substance in the stomach and digestive tract. diet, thus preventing constipation. • This gives a sense of fullness and slows sugar and • The polysaccharide cellulose is an insoluble fiber. cholesterol absorption into the bloodstream. • Sources include whole grains, seeds, brown rice, • Some foods high in soluble fiber include oatmeal, cabbage, and vegetable skins. legumes (peas, beans, and lentils), apples, psyllium husk, and carrots. • Fruit pectins used in making jellies contain soluble fiber. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.2 Functional Groups in Monosaccharides 6.2 Functional Groups in Monosaccharides • Carbohydrates are • Alcohols are classified by the number of alkyl groups considered attached to the carbon atom bonded to the hydroxyl group. polyhydroxyaldehydes • A primary (1) alcohol has one alkyl group. or polyhydroxy ketones • A secondary (2) alcohol has two alkyl groups. because they contain • A tertiary (3) alcohol has three alkyl groups. several hydroxyl • Monosaccharides contain primary and secondary alcohols. (alcohol) groups and either an aldehyde or ketone group. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.2 Functional Groups in Monosaccharides 6.2 Functional Groups in Monosaccharides • Members of the aldehyde family always have a carbonyl group with • The ketone family of organic compounds is a hydrogen atom bonded to one side of the carbonyl and an alkyl or structurally similar to the aldehydes. aromatic group bonded to the other. • The difference is that ketones have an alkyl or • Monosaccharides can contain an aldehyde functional group at one end of the molecule (in addition to multiple hydroxyl groups). aromatic group on both sides of the carbonyl. • Ketones occur in a wide variety of biologically relevant compounds. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 2 2/25/2015 6.2 Functional Groups in Monosaccharides 6.3 Stereochemistry in Monosaccharides • A monosaccharide that contains an aldehyde functional • A carbon atom with tetrahedral geometry and four group is an aldose, and one that contains a ketone different atoms or groups attached to it is chiral. functional group is a ketose. • A compound with a single chiral carbon atom can • A monosaccharide with three carbons is a triose, one exist as two enantiomers. with four carbons is a tetrose, one with five carbons is • How many chiral carbons does a glucose molecule a pentose, and one with six carbons is a hexose. contain? – Carbon 1 is not tetrahedral, and carbon 6 does not have four different groups attached. – Carbons 2 to 5 are tetrahedral and have four different atoms or groups of atoms attached, so they are chiral carbons. • Glucose has a four chiral centers. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides • The number of stereoisomers possible increases with the number of chiral centers present in a molecule. • The general formula for determining the number of stereoisomers is 2n, where n is the number of chiral centers present in the molecule. • Because glucose has four chiral centers, 16 stereoisomers are possible. • Only only one of these stereoisomers is our preferred energy source. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides • In the Fischer projection, horizontal lines on a chiral center represent wedges, and vertical lines on a chiral center represent dashes. • A chiral carbon is not shown as a “C” on a Fischer projection but is implied at the intersection of the lines. • This gives the viewer a quick and easy way of identifying the number of chiral centers. • The designation of D or L is based on the Fischer projection positioning in glyceraldehyde, used as a reference molecule for this designation. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 3 2/25/2015 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides • D-sugars have the –OH on the chiral carbon farthest from the • When we draw enantiomers in a Fischer projection, carbonyl C=O on the right side of the molecule. they are written as if there is a mirror placed between • The enantiomer is the L-sugar, which has the –OH group on the two molecules. the chiral carbon farthest from the C=O on the left side of the projection. • Attached atoms or groups on the right in one • Most of the carbohydrates found in nature and the ones we use enantiomer appear on the left side of the other. for energy are D-sugars. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides Drawing an Enantiomer in a Fischer Projection Stereoisomers That Are Not Enantiomers • Step 1: Locate the chiral centers. • Stereoisomers that are not enantiomers are called • Step 2: Switch horizontal groups on the chiral centers. diastereomers. • Diastereomers are stereoisomers that are not exact mirror images. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides Important Monosaccharides: Glucose Important Monosaccharides: Galactose • The most abundant monosaccharide found in nature is • Galactose is found combined with glucose in the glucose, also called dextrose, blood sugar, or grape disaccharide lactose, which is present in milk and other sugar. dairy products. • It is found in fruits, vegetables, and corn syrup. • Galactose has a single chiral center (carbon 4) arranged • Diabetics have difficulty getting glucose from the opposite that of glucose. bloodstream into their cells so that glycolysis can occur. • Diastereomers that differ in just one chiral center are This is why they must regularly monitor their blood epimers. glucose levels. • The body can convert galactose into glucose with an • Glucose is also a sugar unit in sucrose (table sugar), enzyme called an epimerase. lactose (milk sugar), amylase, amylopectin, glycogen, and cellulose. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 4 2/25/2015 6.3 Stereochemistry in Monosaccharides 6.3 Stereochemistry in Monosaccharides Important Monosaccharides: Mannose Important Monosaccharides: Fructose • Mannose is a monosaccharide • The ketose fructose is also found most notably in referred to as fruit sugar or cranberries. It is not easily levulose. It is found in fruits, absorbed by the body. vegetables, and honey. • In combination with glucose, • Mannose has been shown to be it gives us the disaccharide effective against urinary tract sucrose (table sugar). infections (UTIs). When the level • Fructose is the sweetest of mannose builds up in the monosaccharide, one and a half bladder, bacteria will attach times sweeter than table sugar. themselves to the mannose in • Even though it is not an epimer the urine and be eliminated. of glucose, fructose can be • Mannose is an epimer of broken down for energy glucose. production in the body. © 2014 Pearson Education, Inc. © 2014 Pearson Education, Inc. 6.3 Stereochemistry in Monosaccharides 6.4 Reactions of Monosaccharides Important Monosaccharides: Ribose • Linear structures do not show how most • The pentoses (five-carbon sugars) monosaccharides actually are structured. ribose and 2-deoxyribose are a part
Recommended publications
  • Carbohydrates: Structure and Function
    CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group.
    [Show full text]
  • Carbohydrates Adapted from Pellar
    Carbohydrates Adapted from Pellar OBJECTIVE: To learn about carbohydrates and their reactivities BACKGROUND: Carbohydrates are a major food source, with most dietary guidelines recommending that 45-65% of daily calories come from carbohydrates. Rice, potatoes, bread, pasta and candy are all high in carbohydrates, specifically starches and sugars. These compounds are just a few examples of carbohydrates. Other carbohydrates include fibers such as cellulose and pectins. In addition to serving as the primary source of energy for the body, sugars play a number of other key roles in biological processes, such as forming part of the backbone of DNA structure, affecting cell-to-cell communication, nerve and brain cell function, and some disease pathways. Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones, or compounds that break down into these substances. They can be categorized according to the number of carbons in the structure and whether a ketone or an aldehyde group is present. Glucose, for example, is an aldohexose because it contains six carbons and an aldehyde functional group. Similarly, fructose would be classified as a ketohexose. glucose fructose A more general classification scheme exists where carbohydrates are broken down into the groups monosaccharides, disaccharides, and polysaccharides. Monosaccharides are often referred to as simple sugars. These compounds cannot be broken down into smaller sugars by acid hydrolysis. Glucose, fructose and ribose are examples of monosaccharides. Monosaccharides exist mostly as cyclic structures containing hemiacetal or hemiketal groups. These structures in solution are in equilibrium with the corresponding open-chain structures bearing aldehyde or ketone functional groups. The chemical linkage of two monosaccharides forms disaccharides.
    [Show full text]
  • Nucleosides & Nucleotides
    Nucleosides & Nucleotides Biochemistry Fundamentals > Genetic Information > Genetic Information NUCLEOSIDE AND NUCLEOTIDES SUMMARY NUCLEOSIDES  • Comprise a sugar and a base NUCLEOTIDES  • Phosphorylated nucleosides (at least one phosphorus group) • Link in chains to form polymers called nucleic acids (i.e. DNA and RNA) N-BETA-GLYCOSIDIC BOND  • Links nitrogenous base to sugar in nucleotides and nucleosides • Purines: C1 of sugar bonds with N9 of base • Pyrimidines: C1 of sugar bonds with N1 of base PHOSPHOESTER BOND • Links C3 or C5 hydroxyl group of sugar to phosphate NITROGENOUS BASES  • Adenine • Guanine • Cytosine • Thymine (DNA) 1 / 8 • Uracil (RNA) NUCLEOSIDES • =sugar + base • Adenosine • Guanosine • Cytidine • Thymidine • Uridine NUCLEOTIDE MONOPHOSPHATES – ADD SUFFIX 'SYLATE' • = nucleoside + 1 phosphate group • Adenylate • Guanylate • Cytidylate • Thymidylate • Uridylate Add prefix 'deoxy' when the ribose is a deoxyribose: lacks a hydroxyl group at C2. • Thymine only exists in DNA (deoxy prefix unnecessary for this reason) • Uracil only exists in RNA NUCLEIC ACIDS (DNA AND RNA)  • Phosphodiester bonds: a phosphate group attached to C5 of one sugar bonds with - OH group on C3 of next sugar • Nucleotide monomers of nucleic acids exist as triphosphates • Nucleotide polymers (i.e. nucleic acids) are monophosphates • 5' end is free phosphate group attached to C5 • 3' end is free -OH group attached to C3 2 / 8 FULL-LENGTH TEXT • Here we will learn about learn about nucleoside and nucleotide structure, and how they create the backbones of nucleic acids (DNA and RNA). • Start a table, so we can address key features of nucleosides and nucleotides. • Denote that nucleosides comprise a sugar and a base.
    [Show full text]
  • 8| Nucleotides and Nucleic Acids
    8| Nucleotides and Nucleic Acids © 2013 W. H. Freeman and Company CHAPTER 8 Nucleotides and Nucleic Acids Key topics: – Biological function of nucleotides and nucleic acids – Structures of common nucleotides – Structure of double‐stranded DNA – Structures of ribonucleic acids – Denaturation and annealing of DNA – Chemistry of nucleic acids; mutagenesis Functions of Nucleotides and Nucleic Acids • Nucleotide Functions: – Energy for metabolism (ATP) – Enzyme cofactors (NAD+) –Signal transduction (cAMP) • Nucleic Acid Functions: – Storage of genetic info (DNA) – Transmission of genetic info (mRNA) –Processing of genetic information (ribozymes) –Protein synthesis (tRNA and rRNA) Nucleotides and Nucleosides • Nucleotide = – Nitrogeneous base –Pentose – Phosphate • Nucleoside = – Nitrogeneous base –Pentose • Nucleobase = – Nitrogeneous base Phosphate Group •Negatively charged at neutral pH • Typically attached to 5’ position – Nucleic acids are built using 5’‐triphosphates •ATP, GTP, TTP, CTP – Nucleic acids contain one phosphate moiety per nucleotide •May be attached to other positions Other Nucleotides: Monophosphate Group in Different Positions Pentose in Nucleotides • ‐D‐ribofuranose in RNA • ‐2’‐deoxy‐D‐ribofuranose in DNA •Different puckered conformations of the sugar ring are possible Nucleobases •Derivatives of pyrimidine or purine • Nitrogen‐containing heteroaromatic molecules •Planar or almost planar structures •Absorb UV light around 250–270 nm Pyrimidine Bases • Cytosine is found in both DNA and RNA •Thymineis found only in DNA
    [Show full text]
  • Nucleotides and Nucleic Acids
    CHAPTER 8 Nucleotides and Nucleic Acids Functions of Nucleotides and Nucleic Acids • Nucleotide Functions: – Energy for metabolism (ATP) – Enzyme cofactors (NAD+) – Signal transduction (cAMP) • Nucleic Acid Functions: – Storage of genetic info (DNA) – Transmission of genetic info (mRNA) – Processing of genetic information (ribozymes) – Protein synthesis (tRNA and rRNA) Nucleotides and Nucleosides • Nucleotide = – Nitrogeneous base – Pentose – Phosphate • Nucleoside = – Nitrogeneous base – Pentose • Nucleobase = – Nitrogeneous base Phosphate Group • Negatively charged at neutral pH • Typically attached to 5’ position – Nucleic acids are built using 5’- triphosphates • ATP, GTP, TTP, CTP – Nucleic acids contain one phosphate moiety per nucleotide • May be attached to other positions Other Nucleotides: Monophosphate Group in Different Positions Pentose in Nucleotides • -D-ribofuranose in RNA • -2’-deoxy-D-ribofuranose in DNA • Different puckered conformations of the sugar ring are possible Purine Bases • Adenine and guanine are found in both RNA and DNA • Also good H-bond donors and acceptors • Adenine pKa at N1 is 3.8 • Guanine pKa at N7 is 2.4 • Neutral molecules at pH 7 • Derivatives of pyrimidine or purine • Nitrogen-containing heteroaromatic molecules • Planar or almost planar structures • Absorb UV light around 250–270 nm Pyrimidine Bases • Cytosine is found in both DNA and RNA • Thymine is found only in DNA • Uracil is found only in RNA • All are good H-bond donors and acceptors • Cytosine pKa at N3 is 4.5 • Thymine pKa at N3 is 9.5
    [Show full text]
  • Carbohydrates: Disaccharides and Polysaccharides
    Carbohydrates: Disaccharides and Polysaccharides Disaccharides Linkage of the anomeric carbon of one monosaccharide to the OH of another monosaccharide via a condensation reaction. The bond is termed a glycosidic bond. The end of the disaccharide that contains the anomeric carbon is referred to as the reducing end because it is capable of reducing various metal ions. Formation of a glycosidic bond between two glucose molecules. Nomenclature: To describe disaccharides you need to specify the following: 1. The names of the two monosaccharides. 2. How they are linked together (one anomeric is always used). 3. The configuration of the anomeric carbons on both monosaccharides. The Six Simple Rules for Naming Disaccharides are as follows: 1. The non-reducing end defines the first sugar. 2. Configuration of the anomeric carbon of the 1st sugar (α,β). 3. Name of 1st monosaccharide, root name followed by pyranosyl (6- ring) or furanosyl (5-ring). 4. Atoms which are linked together, 1st sugar then 2nd sugar. 5. Configuration of the anomeric carbon of the second sugar (α,β) (often omitted if the anomeric carbon is free since α and β forms are in equilibrium.) 6. Name of 2nd monosaccharide, root name followed by pyranose (6- ring) or furanose (5-ring) (If both anomeric carbons are involved, then the name ends in ‘oside”, not ‘ose’) Example: Sucrose (table sugar): The anomeric carbon of glucose forms a bridge to the anomeric carbon of fructose. Since there is no reducing end, either sugar can be used to begin the name. Sucrose, drawn in two different ways. Note that both anomeric carbons are involved in the glycosidic linkage, thus both conformations have to be specified.
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • Impact of Glycosidic Bond Configuration on Short Chain Fatty
    nutrients Article Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota Hannah C. Harris 1,2, Christine A. Edwards 1 and Douglas J. Morrison 2,* 1 School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK; [email protected] (H.C.H.); [email protected] (C.A.E.) 2 Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow G75 0QF, UK * Correspondence: [email protected]; Tel.: +44-135-527-0134 Received: 17 October 2016; Accepted: 22 December 2016; Published: 1 January 2017 Abstract: Short chain fatty acids (SCFA) are the major products of carbohydrate fermentation by gut bacteria. Different carbohydrates are associated with characteristic SCFA profiles although the mechanisms are unclear. The individual SCFA profile may determine any resultant health benefits. Understanding determinants of individual SCFA production would enable substrate choice to be tailored for colonic SCFA manipulation. To test the hypothesis that the orientation and position of the glycosidic bond is a determinant of SCFA production profile, a miniaturized in vitro human colonic batch fermentation model was used to study a range of isomeric glucose disaccharides. Diglucose α(1-1) fermentation led to significantly higher butyrate production (p < 0.01) and a lower proportion of acetate (p < 0.01) compared with other α bonded diglucoses. Diglucose β(1-4) also led to significantly higher butyrate production (p < 0.05) and significantly increased the proportions of propionate and butyrate compared with diglucose α(1-4) (p < 0.05).
    [Show full text]
  • Carbohydrates
    Carbohydrates Carbohydrates Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 1 Carbohydrates Carbohydrates are ▪ A major source of energy from our diet. ▪ Composed of the elements C, H, and O. ▪ Also called saccharides, which means “sugars.” Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 2 Carbohydrates Carbohydrates ▪ Are produced by photosynthesis in plants. ▪ Such as glucose are synthesized in plants from CO2, H2O, and energy from the sun. ▪ Are oxidized in living cells (respiration) to produce CO2, H2O, and energy. Copyright © 2007 by Pearson Education, Inc Publishing as Benjamin Cummings 3 ▪ Carbohydrates – polyhydroxyaldehydes or polyhydroxy-ketones of formula (CH2O)n, or compounds that can be hydrolyzed to them. (sugars or saccharides) ▪ Monosaccharides – carbohydrates that cannot be hydrolyzed to simpler carbohydrates; eg. Glucose or fructose. ▪ Disaccharides – carbohydrates that can be hydrolyzed into two monosaccharide units; eg. Sucrose, which is hydrolyzed into glucose and fructose. ▪ Oligosaccharides – carbohydrates that can be hydrolyzed into a few monosaccharide units. ▪ Polysaccharides – carbohydrates that are are polymeric sugars; eg Starch or cellulose. 4 ▪ Aldose – polyhydroxyaldehyde, eg glucose ▪ Ketose – polyhydroxyketone, eg fructose ▪ Triose, tetrose, pentose, hexose, etc. – carbohydrates that contain three, four, five, six, etc. carbons per molecule (usually five or six); eg. Aldohexose, ketopentose, etc. ▪ Reducing sugar – a carbohydrate that is oxidized by Tollen’s, Fehling’s or Benedict’s solution. ▪ Tollen’s: Ag+ → Ag (silver mirror) ▪ Fehling’s or Benedict’s: Cu2+ (blue) → Cu1+ (red ppt) ▪ These are reactions of aldehydes and alpha-hydroxyketones. ▪ All monosaccharides (both aldoses and ketoses) and most* disaccharides are reducing sugars. ▪ *Sucrose (table sugar), a disaccharide, is not a reducing sugar.
    [Show full text]
  • Monosaccharides
    UNIT 5 MONOSACCHARIDES Structure 5.1 Introduction 5.4 Biologically Important Sugar Derivatives Expected Learning Outcomes Sugar Acids 5.2 Overview of Carbohydrates Sugar Alcohols Amino Sugars 5.3 Monosaccharides Deoxy Sugars Linear Structure Sugar Esters Ring Structure Glycosides Conformations 5.5 Summary Stereoisomers 5.6 Terminal Questions Optical Properties 5.7 Answers 5.8 Further Readings 5.1 INTRODUCTION Carbohydrates constitute the most abundant organic molecules found in nature and are widely distributed in all living organisms. These are synthesized in nature by green plants, algae and some bacteria by photosynthesis. They also form major part of our diet and provide us energy required for the life sustaining activities such as growth, metabolism and reproduction. At microscopic level, these constitute the structural components of the cell such as cell membrane and cell wall. In this unit, we shall begin with general overview of the chemical nature of carbohydrates and their classification. The unit focuses mainly on the simplest carbohydrates known as monosaccharides. We shall learn about the chemical structures of different monosaccharides and how to draw them. We shall also discuss their stereochemistry in detail which would help to understand how change in orientation of same substituents results in different molecules with same chemical formula but different properties. We shall also discuss about some of the chemical reactions of monosaccharides resulting in 77 formation of important derivatives and their biological importance.
    [Show full text]
  • Pentose Phosphate Pathway in Health and Disease: from Metabolic
    UNIVERSIDADE DE LISBOA FACULDADE DE FARMÁCIA DEPARTAMENTO DE BIOQUÍMICA PENTOSE PHOSPHATE PATHWAY IN HEALTH AND DISEASE: FROM METABOLIC DYSFUNCTION TO BIOMARKERS Rúben José Jesus Faustino Ramos Orientador: Professora Doutora Maria Isabel Ginestal Tavares de Almeida Mestrado em Análises Clínicas 2013 Pentose Phosphate Pathway in health and disease: From metabolic dysfunction to biomarkers . Via das Pentoses Fosfato na saúde e na doença: Da disfunção metabólica aos biomarcadores Dissertação apresentada à Faculdade de Farmácia da Universidade de Lisboa para obtenção do grau de Mestre em Análises Clínicas Rúben José Jesus Faustino Ramos Lisboa 2013 Orientador: Professora Doutora Maria Isabel Ginestal Tavares de Almeida The studies presented in this thesis were performed at the Metabolism and Genetics group, iMed.UL (Research Institute for Medicines and Pharmaceutical Sciences), Faculdade de Farmácia da Universidade de Lisboa, Portugal, under the supervision of Prof. Maria Isabel Ginestal Tavares de Almeida, and in collaboration with the Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands, Dr. Mirjam Wamelink. De acordo com o disposto no ponto 1 do artigo nº 41 do Regulamento de Estudos Pós- Graduados da Universidade de Lisboa, deliberação nº 93/2006, publicada em Diário da Republica – II série nº 153 – de 5 julho de 2003, o autor desta dissertação declara que participou na conceção e execução do trabalho experimental, interpretação dos resultados obtidos e redação dos manuscritos. Para os meus pais e
    [Show full text]
  • Pentose Phosphate Pathway Biochemistry, Metabolism and Inherited Defects
    Pentose phosphate pathway biochemistry, metabolism and inherited defects Amsterdam 2008 Mirjam M.C. Wamelink The research described in this thesis was carried out at the Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands. The publication of this thesis was financially supported by: Department of Clinical Chemistry, VU University Medical Center Amsterdam E.C. Noyons Stichting ter bevordering van de Klinische Chemie in Nederland J.E. Jurriaanse Stichting te Rotterdam Printed by: Printpartners Ipskamp BV, Enschede ISBN: 978-90-9023415-1 Cover: Representation of a pathway of sugar Copyright Mirjam Wamelink, Amsterdam, The Netherlands, 2008 2 VRIJE UNIVERSITEIT Pentose phosphate pathway biochemistry, metabolism and inherited defects ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Geneeskunde op donderdag 11 december 2008 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Mirjam Maria Catharina Wamelink geboren te Alkmaar 3 promotor: prof.dr.ir. C.A.J.M. Jakobs copromotor: dr. E.A. Struijs 4 Abbreviations 6PGD 6-phosphogluconate dehydrogenase ADP adenosine diphosphate ATP adenosine triphosphate CSF cerebrospinal fluid DHAP dihydroxyacetone phosphate G6PD glucose-6-phosphate dehydrogenase GA glyceraldehyde GAPDH glyceraldehyde-3-phosphate dehydrogenase GSG oxidized glutathione
    [Show full text]