Converting Galactose Into the Rare Sugar Talose with Cellobiose 2-Epimerase As Biocatalyst
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A) and Co-Fermentation (B
Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals Na Wei PI: Yong-Su Jin Energy Biosciences Institute /Institute for Genomic Biology University of Illinois at Urbana-Champaign Corn ethanol vs. Cellulosic ethanol Corn starch Cellulosic biomass Gelatinization Pretreatment + Cellulases Amylases Glucose + Xylose + Acetate Glucose + Fermentation inhibitors yeast yeast Ethanol + CO2 Ethanol + CO2 • Single sugar fermentation • Mixed sugar fermentation • No fermentation inhibitors • Fermentation inhibitors • Easy high loading • Difficulties in high loading 2 Saccharomyces cerevisiae: a workhorse strain for industrial ethanol production The most widely used yeast since ancient times in baking and brewing Osmotolerant and ethanol-tolerant Numerous genetic/genomic tools are available Overexpression / Knockout Expression of heterologous enzymes Cannot utilize xylose Not suitable for producing cellulosic biofuels 3 Basic strategy in metabolic engineering of xylose fermentation in S. cerevisiae Scheffersomyces stipitis Saccharomyces cerevisiae Xylose Xylose XYL1 Xylitol Xylitol XYL2 Xylulose Xylulose XYL3 X-5-P X-5-P PPP and Glycolysis PPP and Glycolysis Ethanol Ethanol . Natural xylose fermenting . High ethanol tolerance . Low ethanol tolerance . Amenable to metabolic engineering 4 Laboratory evolution of an engineered S. cerevisiae strain for further improvement DA24 n 16 Enrichment Single colony by serial culture isolation in 80 g/L of xylose Evaluation 5 Comparison of xylose fermentation capability between engineered S. cerevisiae and S. stipitis Engineered S. cerevisiae S. stipitis The engineered S. cerevisiae strain consumed xylose almost as fast as S. stipitis, the fastest xylose-fermenting yeast 6 Ha et al. PNAS, 108:504-509 Why we want to co-ferment cellobiose and xylose? Typical fermentation profile of glucose and xylose mixture Glucose Glycolysis Ethanol Pentose Phosphate Pathway CO2 Xylose 7 Engineered S. -
Bioresources.Com
PEER-REVIEWED ARTICLE bioresources.com ADSORPTION OF CELLOBIOSE-PENDANT POLYMERS TO A CELLULOSE MATRIX DETERMINED BY QUARTZ CRYSTAL MICROBALANCE ANALYSIS Shingo Yokota,† Takefumi Ohta, Takuya Kitaoka,* and Hiroyuki Wariishi Cellobiose-pendant polymers were synthesized by radical polymerization and their affinity for a cellulose matrix was investigated by quartz crystal microbalance (QCM). A 2-(methacryloyloxy)ethylureido cellobiose (MOU-Cel) macromer was synthesized by coupling cellobiosylamine with 2-(methacryloyloxy)ethyl isocyanate followed by polymerization in an aqueous radical reaction system. The interaction of the resulting poly(MOU-Cel) with a pure cellulose matrix in water was evaluated by QCM analysis. Poly(MOU-Cel) was strongly adsorbed to the cellulose substrate, whereas neither cellobiose nor MOU-Cel macromer exhibited an attractive interaction with cellulose. This specific interaction was not inhibited by the presence of ionic contaminants, suggesting that multiple cellobiopyranose moieties in each polymer molecule might cooperatively enhance its affinity for cellulose. Moderate insertion of acrylamide units into the polymer backbone improved the affinity for cellulose, possibly due to an increased mobility of sugar side chains. Polymers such as these, with a high affinity for cellulose, have potential applications for the surface functionalization of cellulose-based materials, including paper products. Keywords: Cellobiose; Cellulose; Sugar-pendant polymer; Non-electrostatic interaction; Quartz crystal microbalance Contact information: Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; †Present address: Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; *Corresponding author: [email protected] INTRODUCTION Cellulose is the most abundant, renewable carbohydrate resource and has been widely used as a raw material in a variety of applications (Klemm et al. -
Cellobiose 2-Epimerase, Process for Producing
(19) TZZ ¥ZZ_T (11) EP 2 395 080 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/00 (2006.01) C12N 1/15 (2006.01) 06.08.2014 Bulletin 2014/32 C12N 1/19 (2006.01) C12N 1/21 (2006.01) C12N 5/10 (2006.01) C12N 9/90 (2006.01) (2006.01) (2006.01) (21) Application number: 10738433.1 C12N 15/09 C12P 19/00 (22) Date of filing: 25.01.2010 (86) International application number: PCT/JP2010/050928 (87) International publication number: WO 2010/090095 (12.08.2010 Gazette 2010/32) (54) CELLOBIOSE 2-EPIMERASE, PROCESS FOR PRODUCING SAME, AND USE OF SAME CELLOBIOSE 2-EPIMERASE, HERSTELLUNGSVERFAHREN DAFÜR UND VERWENDUNG CELLOBIOSE 2-ÉPIMÉRASE, PROCÉDÉ DE PRODUCTION DE CELLE-CI ET UTILISATION DE CELLE-CI (84) Designated Contracting States: (74) Representative: Daniels, Jeffrey Nicholas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Page White & Farrer HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Bedford House PT RO SE SI SK SM TR John Street London WC1N 2BF (GB) (30) Priority: 05.02.2009 JP 2009025070 (56) References cited: (43) Date of publication of application: WO-A1-2008/062555 14.12.2011 Bulletin 2011/50 • PARK CHANG-SU ET AL: "Characterization of a (73) Proprietor: Hayashibara Co., Ltd. recombinant cellobiose 2-epimerase from Okayama-shi, Okayama (JP) Caldicellulosiruptor saccharolyticus and its application in the production of mannose from (72) Inventors: glucose.", APPLIED MICROBIOLOGY AND • WATANABE Hikaru BIOTECHNOLOGY DEC 2011 LNKD- PUBMED: Okayama-shi 21691788,vol. -
Supporting Online Material
1 SUPPLEMENTARY MATERIAL 2 The glycan alphabet is not universal: a hypothesis 3 4 Jaya Srivastava1*, P. Sunthar2 and Petety V. Balaji1 5 6 1Department of Biosciences and Bioengineering, Indian Institute of 7 Technology Bombay, Powai, Mumbai 400076, India 8 9 2Department of Chemical Engineering, Indian Institute of Technology 10 Bombay, Powai, Mumbai 400076, India 11 12 *Corresponding author 13 Email: [email protected] 1 14 CONTENTS Data Description Figure S1 Number of organisms with different number of strains sequenced Figure S2 Biosynthesis pathways Figure S3 Proteome sizes for different number of monosaccharides Figure S4 Prevalence of monosaccharides in species versus that in genomes Figure S5 Bit score distribution plots for hits of various pairs of profiles Table S1 Tools and databases used in this study References References cited in Table S1 Table S2 Comparison of the precursor and nucleotide used for the biosynthesis of two enantiomers of a monosaccharide Flowchart S1 Procedure used to generate HMM profiles Flowchart S2 Precedence rules for assigning annotation to proteins that are hits to two or more profiles and/or BLASTp queries References References to the research articles which describe the pathways (or enzymes of the pathways) of monosaccharide biosynthesis. These formed the basis for generating HMM profiles and choosing BLASTp queries. 15 16 MS-EXCEL file provided separately: Supplementary Data.xlsx 17 Worksheet1 Details of HMM profiles Worksheet2 Details of BLASTp queries Worksheet3 Prevalence of monosaccharides in genomes / species Worksheet4 Abbreviated names of monosaccharides Worksheet5 Enzyme types, enzymes and monosaccharide groups Worksheet6 Precursors of various monosaccharides 18 2 19 Figure S1 The number of species for which different number of strains are sequenced. -
Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD
Application Note 225 Note Application Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD Valoran Hanko and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Introduction The Thermo Scientific™ Dionex™ CarboPac™ PA1 Compositional carbohydrate analysis of biocrop feedstock anion-exchange column rapidly elutes corn stover is essential to the efficient production of cellulosic carbohydrates, resolving the monosacccharides from the ethanol.1 Corn stover is the leaf, husk, stalk, and cob unretained and undetected noncarbohydrate components remaining in the field after harvest and makes up about of acid-hydrolyzed corn stover. Under these conditions, half the yield of a crop of corn. It can also contain weeds disaccharides and trisaccharides are also resolved, with a and grasses collected during the harvest of corn stover. total elution time less than 10 min. Thus, the sum of all Along with other lignocellulosic biomass, corn stover the carbohydrate peaks is a useful measure of the energy provides 1.3 billion tons of raw material annually and is a production potential of acid-hydrolyzed corn stover. common feedstock for fermentation systems used in The carbohydrate content of acid-hydrolyzed corn stover biofuel production.2 can be very high, and for some carbohydrates can even Corn stover is acid-hydrolyzed to release a water-soluble approach their saturation concentration in an aqueous mixture of carbohydrates, typically consisting of arabi- solution. When used for saccharide determinations, PAD nose, glucose, galactose, mannose, xylose, fructose, and with a gold working electrode is a sensitive detection cellobiose among other noncarbohydrate substances in method, but like other detection techniques it does not 0.5 to 1.5% (w/w) sulfuric acid.3,4 The concentration of have an unlimited linear range. -
Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water
Ind. Eng. Chem. Res. 1998, 37, 357-361 357 Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, and K. Arai* Department of Chemical Engineering, Tohoku University, Aza, Aoba, Aramaki, Aoba-ku, Sendai 980-77, Japan Cellobiose decomposition kinetics and products in sub- and supercritical water were studied with a flow apparatus at temperatures from 300 to 400 °C at pressures from 25 to 40 MPa, and at short residence times (0.04-2 s). Cellobiose was found to decompose via hydrolysis of the glycosidic bond and via pyrolysis of the reducing end. Pyrolysis products were glycosylerythrose (GE) and glycosylglycolaldehyde (GG) which were confirmed by FAB-MS. Hydrolysis products were glucose, erythrose, and glycolaldehyde from cellobiose, GE, and GG, respectively, as well as glucose decomposition products. The kinetics from glucose decomposition were used to fit the experimental results and evaluate rate constants of hydrolysis (kH) and pyrolysis rate constants (k1 and k2). The activation energy for the hydrolysis of cellobiose and pyrolysis products GG and GE was found to be 108.6, 110.5, and 106.1 kJ/mol, respectively. In the supercritical region, there was a decrease in the pyrolysis rates k1 and k2 and a corresponding increase in hydrolysis selectivity from 85% to 95% as the pressure increased from 30 to 40 MPa. Introduction Reaction times were in the order of 1-14 min, and the product analysis was able to account for 60% of the Cellulose hydrolysis products have the potential to cellobiose decomposition products. -
Screening of Candidate Substrates and Coupling Ions of Transporters By
TOOLS AND RESOURCES Screening of candidate substrates and coupling ions of transporters by thermostability shift assays Homa Majd1†, Martin S King1†, Shane M Palmer1, Anthony C Smith1, Liam DH Elbourne2, Ian T Paulsen2, David Sharples3,4, Peter JF Henderson3,4, Edmund RS Kunji1* 1Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom; 2Department of Molecular Sciences, Macquarie University, Sydney, Australia; 3Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; 4School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom Abstract Substrates of most transport proteins have not been identified, limiting our understanding of their role in physiology and disease. Traditional identification methods use transport assays with radioactive compounds, but they are technically challenging and many compounds are unavailable in radioactive form or are prohibitively expensive, precluding large- scale trials. Here, we present a high-throughput screening method that can identify candidate substrates from libraries of unlabeled compounds. The assay is based on the principle that transport proteins recognize substrates through specific interactions, which lead to enhanced stabilization of the transporter population in thermostability shift assays. Representatives of three different transporter (super)families were tested, which differ in structure as well as transport and ion coupling mechanisms. In each case, the substrates were identified correctly from a large set of *For correspondence: chemically related compounds, including stereo-isoforms. In some cases, stabilization by substrate [email protected] binding was enhanced further by ions, providing testable hypotheses on energy coupling †These authors contributed mechanisms. equally to this work DOI: https://doi.org/10.7554/eLife.38821.001 Competing interests: The authors declare that no competing interests exist. -
Cellobiose/Mannitol Sugar Permeability Test Complements Biopsy Histopathology in Clinical Investigation of the Jejunum
Gut: first published as 10.1136/gut.25.11.1241 on 1 November 1984. Downloaded from Gut, 1984, 25, 1241-1246 Cellobiose/mannitol sugar permeability test complements biopsy histopathology in clinical investigation of the jejunum S STROBEL, W G BRYDON, AND ANNE FERGUSON From the Gastro-Intestinal Unit, University ofEdinburgh and Western General Hospital, Edinburgh, Scotland SUMMARY Intestinal permeability to probe molecules has been shown to correlate closely with the presence or absence of villous atrophy in a jejunal biopsy. The purpose of this study was to establish if there exist groups of patients with functional derangement of intestinal permeability but normal histopathology of the small bowel mucosa. In 135 patients a cellobiose/mannitol permeability test was performed at the same time as jejunal biopsy. Diagnosis included coeliac disease, Crohn's disease, irritable bowel syndrome, idiopathic diarrhoea, self diagnosed food allergy, atopic eczema and postinfectious malabsorption. The value of the cellobiose/mannitol test in identifying patients with abnormal jejunal biopsy histopathology was confirmed. The permeability test was abnormal in all 28 patients with partial or subtotal villous atrophy, and also in all 10 in whom there was a high intraepithelial lymphocyte count despite normal villi and crypts. Functional abnormality of the small intestine has not previously been reported in patients with this jejunal biopsy abnormality. Abnormalities of permeability were also found in patients with idiopathic diarrhoea, folate deficiency, postinfectious or traveller's diarrhoea, small bowel Crohn's disease, and atopic eczema. These results show that sugar permeability tests have more potential in clinical investigation than merely serving as screening tests before jejunal biopsy. -
The Utilization of Sugars by Fungi Virgil Greene Lilly
West Virginia Agricultural and Forestry Experiment Davis College of Agriculture, Natural Resources Station Bulletins And Design 1-1-1953 The utilization of sugars by fungi Virgil Greene Lilly H. L. Barnett Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins Digital Commons Citation Lilly, Virgil Greene and Barnett, H. L., "The utilization of sugars by fungi" (1953). West Virginia Agricultural and Forestry Experiment Station Bulletins. 362T. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/629 This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Digitized by the Internet Archive in 2010 with funding from Lyrasis IVIembers and Sloan Foundation http://www.archive.org/details/utilizationofsug362lill ^ni^igaro mU^ 'wmSS'"""' m^ r^' c t» WES: VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STAl. luiietin I62T 1 June 1953 ; The Utilization of Sugars by Fungi by Virgil Greene Lilly and H. L. Barnett WEST VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STATION ACKNOWLEDGMENT The authors wish to thank research assist- ants Miss Janet Posey and Mrs. Betsy Morris Waters for their faithful and conscientious help during some of these experiments. THE AUTHORS H. L. Barnett is Mycologist at the West Virginia University Agricultural Experiment Station and Professor of Mycology in the College of Agriculture, Forestry, and Home Economics. Virgil Greene Lilly is Physiol- ogist at the West Virginia University Agricul- tural Experiment Station and Professor of Physiology in the College of Agriculture, Forestry, and Home Economics. -
25 05.Html.Ppt [Read-Only]
25.5 A Mnemonic for Carbohydrate Configurations The Eight D-Aldohexoses CH O H OH CH2OH The Eight D-Aldohexoses All CH O Altruists Gladly Make Gum In H OH Gallon CH2OH Tanks The Eight D-Aldohexoses All Allose CH O Altruists Altrose Gladly Glucose Make Mannose Gum Gulose In Idose H OH Gallon Galactose CH2OH Tanks Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose H OH Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose -
Biochemistry Introductory Lecture Dr
Biochemistry Introductory lecture Dr. Munaf S. Daoud Carbohydrates (CHO) Definition: Aldehyde or Ketone derivatives of the higher polyhydric alcohols or compounds which yield these derivatives on hydrolysis. Classification: (mono, di, oligo, poly) saccharide. Monosaccharides: Can be classified as trioses, tetroses, pentoses, hexoses and heptoses depending upon the number of carbon atoms, and as aldoses or ketoses, depending upon whether they have an aldehyde or ketone group. Aldehyde (-CHO) Aldoses Ketone (-C=O) Ketoses Polysaccharides (glycans): Homopolysaccharides (homoglycans): e.g. starch, glycogen, inulin, cellulose, dextrins, dextrans. Heteropolysaccharides (heteroglycans): e.g. mucopolysaccharides (MPS) or glycosaminoglycans. Function of CHO: 1) Chief source of energy (immediate and stored energy). 2) Constituent of compound lipids and conjugated protein. 3) Structural element like cellulose. 4) Drugs like cardiac glycosides and antibodies. 5) Lactating mammary gland (Lactose in milk). 6) Synthesis of other substances like fatty acids, cholesterol, amino acids…etc. by their degradation products. 7) Constituent of mucopolysaccharides. 1 1) Stereo-isomerism Stereo-isomers: D-form, L-form 2) Optical isomers (optical activity) Enantiomers: dextrorotatory (d or + sign) Levorotatory (l or – sign) Racemic (d l) 3) Cyclic structures or open chain 4) Anomers and Anomeric carbon OH on carbon number 1, if below the plane then its -form, if above the plane then -form. Mutarotation: the changes of the initial optical rotation that takes place -
Reduced Calorie D-Aldohexose Monosaccharides
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 478 580 B1 12 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent specification © int. ci.5: A23L 1/236, C13K 13/00 06.10.93 Bulletin 93/40 (2j) Application number : 90908336.2 (22) Date of filing : 07.05.90 (86) International application number : PCT/US90/02534 (87) International publication number : WO 90/15545 27.12.90 Gazette 90/29 (54) REDUCED CALORIE D-ALDOHEXOSE MONOSACCHARIDES. (30) Priority : 22.06.89 US 369985 (73) Proprietor: UOP 25 East Algonquin Road Des Plaines, Illinois 60017-5017 (US) (43) Date of publication of application 08.04.92 Bulletin 92/15 (72) Inventor : ARENA, Blaise, J. 621 Parsons © Publication of the grant of the patent : Des Plaines, IL 60016 (US) 06.10.93 Bulletin 93/40 Inventor : ARNOLD, Edward, C. 941 East Hillside Naperville, IL 60540 (US) @ Designated Contracting States : AT BE CH DE DK ES FR GB IT LI LU NL SE (74) Representative : Brock, Peter William U RQU HART-DYKES & LORD 91 Wimpole References cited : Street EP-A- 257 626 London W1M 8AH (GB) US-A- 3 667 969 US-A- 4 262 032 JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE vol.21, December 1970, BARK- ING, GB, pages 650-653; "Organoleptic effect in sugar structures", see the whole document CO o 00 If) 00 Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.