1 SUPPLEMENTARY MATERIAL

2 The glycan alphabet is not universal: a hypothesis 3 4 Jaya Srivastava1*, P. Sunthar2 and Petety V. Balaji1 5 6 1Department of Biosciences and Bioengineering, Indian Institute of 7 Technology Bombay, Powai, Mumbai 400076, India 8 9 2Department of Chemical Engineering, Indian Institute of Technology 10 Bombay, Powai, Mumbai 400076, India 11 12 *Corresponding author 13 Email: [email protected]

1

14 CONTENTS

Data Description Figure S1 Number of organisms with different number of strains sequenced Figure S2 Biosynthesis pathways Figure S3 Proteome sizes for different number of Figure S4 Prevalence of monosaccharides in species versus that in genomes Figure S5 Bit score distribution plots for hits of various pairs of profiles Table S1 Tools and databases used in this study References References cited in Table S1 Table S2 Comparison of the precursor and nucleotide used for the biosynthesis of two enantiomers of a Flowchart S1 Procedure used to generate HMM profiles Flowchart S2 Precedence rules for assigning annotation to proteins that are hits to two or more profiles and/or BLASTp queries References References to the research articles which describe the pathways (or enzymes of the pathways) of monosaccharide biosynthesis. These formed the basis for generating HMM profiles and choosing BLASTp queries. 15 16 MS-EXCEL file provided separately: Supplementary Data.xlsx 17 Worksheet1 Details of HMM profiles Worksheet2 Details of BLASTp queries Worksheet3 Prevalence of monosaccharides in genomes / species Worksheet4 Abbreviated names of monosaccharides Worksheet5 Enzyme types, enzymes and monosaccharide groups Worksheet6 Precursors of various monosaccharides 18

2

19 Figure S1 The number of species for which different number of strains are sequenced. 20 Six or fewer strains are sequenced for most of the species. On the other hand, more than 21 50 strains are sequenced for 29 species. Escherichia coli and Salmonella enterica have 22 the highest number of sequenced strains (714 and 602, respectively). Genus and species 23 names are not known for 45 endosymbionts; only their host name is known e.g., 24 Legionella endosymbiont. Each such case is considered as a distinct species.

3

4 Mutase -1-phosphate C1 4 (d)TDP- (d)TDP- C1

ThymidylylT (Pyr to Fur) fucofuranose

)

0 6 4

GPE01130 A GPE09510

3 1

(

C

2 3

- -

e

@

1

1

s

: :

4 H a

C 4

(d)TDP-glucose 1 2

O

t

7

F

c

3

7

x

u E GPE05430 5

4,6-Dehydratase (R) A

6

0

d

e Q

Retention of config @ C5 O

R - 4 4-AminoT 4 (d)TDP-4-keto-6-deoxy-glucose C1 Eq –NH2@C4 3,4-Ketoisomerase 3,4-Ketoisomerase GPE01830 GPE07510 Eq –OH@C4 Ax –OH@C4 GPE01230

(d)TDP-4-amino- e s (d)TDP-3-keto-6-

a (d)TDP-3-keto-6- 4

r 0

0 6-deoxy-glucose C1

3 3

e 4 4 5

4 deoxy-glucose C1 deoxy- C1

m

2 2

i 0

0 3

p E E 2 1 G

E GPE01910 9 P P 3-AminoT (E) 3-AminoT (E) 2

- GPE01910 - 1 P G G 1 - F E 5 GPE01230 : 1 5 , Eq –NH @C3 Eq –NH @C3 : T o 2 GPE01230 2 3 3 l ( 0 3 D y ) 4 rm 0 8 W t o 1 -a 0 B C e in y (d)TDP-3-amino-6- 4 X c m lT (d)TDP-3-amino-6- C 9 A m i Q n

4 a 0 4 0 4 T - o

C C 3 C deoxy-galactose 1 3 4 )

deoxy-glucose 1 o (

8 2

@

n 1

(d)TDP-4-keto- 1

2

i

0 0

H

E E 1 m

AcetylT AcetylT N P

L- C4 Q6T1W7:1-192 P

A –

- G

Q6TFC6:1-265 G x

(3-amino) Q12KT8:1-152 (3-amino) 4 A 4 (d)TDP-Qui4NAc C1 (d)TDP-Qui4NFo E5 ) 4 O F1 4 E - 4 C ( R 6 6 4 4 1 e 62 : (d)TDP-Qui3NAc C1 (d)TDP-Fuc3NAc C1 e A d 5 1- s 4 x u 6: 31 a C 0 – c 1 8 t 3 O t - @ a 2 (d)TDP-4-amino-6- c 3 H s 7 H @ e 0 u 6 d O 0 C (A 4C e – E 4 ) deoxy-galactose 1 P R q - G 4 E AcetylT Q8FBQ3:1-224 4-Epimerase (4-amino) (d)TDP- (d)TDP-6-deoxy- 1 Q2SYH7:1-363 L-rhamnose C4 L-talose 1C 4 4 (d)TDP-Fuc4NAc C1

D-enantiomer L-enantiomer HMM profile BLASTp query D-enantiomer / form unless mentioned otherwise 25 26 Figure S2a TDP-/dTDP-linked monosaccharides derived from glucose-1-phosphate. 27 Abbreviated names are used for some of the monosaccharides. Full names of these are 28 given in Supplementary_data.xlsx:Worksheet4.

4

29

4 Glucose-1-phosphate C1

GPE00330 CytidylylT

4 CDP-glucose C1

GPE05230 4,6-Dehydratase (R) Retention of config @ C5 GPE40110 C-MeT (E) 3-Epimerase CDP-4-keto-6- CDP-4-keto-3C-methyl- 4C 4C 1 CDP-4-keto-6-deoxy 1 4 GPE02530 deoxy-glucose C1 Eq –Me, Ax-OH@C3 6-deoxy-gulose Ax –OH@C4 4-Reductase GPE06230 4 GPE05630 3-Dehydratase -R e e s E a q d t 4 – u 4 c C O c CDP-6-deoxy gulose C1 u H t CDP-6-deoxy-D3,4-glucocene @ @ a d H GPE06230 s e C e O 4 R – - x P26395:1-330 D3,4-glucocene 4 A Q66DP5:1-329 reductase GPE02530

CDP-3,6-dideoxy-L-glycero- 5-Epimerase glycero 4 CDP-3,6-dideoxy-D- - CDP-cereose C1 CDP-cillose 1C 4 D-glycero-4-hexulose 4 C1 4 D-glycero-4-hexulose C1

GPE06230 4-Reductase 4 e - s R Eq –OH@C4 a E e t 4 q d c C – u u @ O c d H GPE06230 H t 1C e O @ a CDP-L-ascarylose 4 R – C s - x 4 e 4 A

2-Epimerase 4C 4 4C CDP-abequose 1 CDP-paratose C1 CDP-tyvelose 1 P14169:1-338

D-enantiomer / pyranose form unless mentioned otherwise 30 D-enantiomer L-enantiomer HMM profile BLASTp query 31 Figure S2b CDP-linked monosaccharides derived from glucose-1-phosphate. 32 Abbreviated names are used for some of the monosaccharides. Full names of these are 33 given in Supplementary_data.xlsx:Worksheet4.

5

4 Glucose-1-phosphate C1

GPE00430 UridylylT GPE00530 GPE09510 4,6-Dehydratase (R) 4-Epimerase Mutase UDP-galacto- UDP-4-keto-6- 4 4 UDP-glucose C1 UDP-galactose C1 4 Retention of config @ C5 deoxy-glucose C1 GPE02230 (pyranose GPE05510 to furanose) 2 5 3 3 , - ) 4 5 :1 E - - 8 ( R E 6-Dehydrogenase N p 4 T 4 E e Y o C q d im GPE03130 2 n G – u G i @ e 2 P O c GPE03430 0 m H E H t r A N 0 @ a a 0 A – 5 s s A - 7 C e e 4 q 1 4 4C E 0 ( , Decarboxylase 1 E 4 ) UDP-GlcA C1 UDP-4-keto GPE20030 GPE01830 1 4-Epimerase 4-AminoT (A) UDP-4-amino-6- UDP-L-rhamnose C4 GPE01230 GPE02230 Ax –NH @C4 4C 2 deoxy-glucose 1 4 UDP-xylose C1 4C 4 AcetylT UDP-GalA 1 UDP-L-Ara4N C1 (4-amino) 4-Epimerase FormylT GPE02230 GPE50010 Q5UR11:1-213 (4-amino) 4C 4 UDP-L- 1 UDP-L-Ara4NFo UDP-Qui4NAc C1 4 C1 D-enantiomer L-enantiomer HMM profile BLASTp query D-enantiomer / pyranose form unless mentioned otherwise 34 35 Figure S2c UDP-linked monosaccharides derived from glucose-1-phosphate. 36 Abbreviated names are used for some of the monosaccharides. Full names of these are 37 given in Supplementary_data.xlsx:Worksheet4.

6

GPE01330 4 Fructofuranose-6-phosphate Glucosamine-6-phosphate C1 GPE07030 2-AmidoT GPE07130 M lT GPE07230 y u Isomease t 0 G t e 3 P a GPE07330 1 G E c 8 P 0 s A 0 E 9 e Q5SIM4:1-254 E 0 1 P 9 3 G 6 P29954:1-387 3 0 0

1 4C C4 -6-phosphate 1 GDP-L-galactose GPE09230 4 3,5 Glc2NAc-6-phosphate Glucosamine-1-phosphate C1 -e GPE09330 Mutase 4C R p 1 4N im GPE09630 RR er AcetylT 5: as 1-3 e 4 Mutase GPE08510 50 Mannose-1-phosphate C1 (2-amino) GPE09430 GPE00620 (GlmU-CTD) GPE00720 GuanylylT 4 Glc2NAc-1-phosphate C1 4 6-dehydrogenase 4 GDP-ManA C1 GDP-mannose C1 GPE03210 GPE00831 GPE03430 GPE05020 4,6-dehydratase (R) UridylylT UridylylT Retention of config @ C5 GPE00830 (GlmU-NTD) 4-AminoT (E) 4 4 C1 GDP-Per C1 GDP-4-keto-6-deoxy mannose 4 Eq –NH2@C4 UDP-Glc2NAc C1 AcetylT Q7DBF7:1-221 GPE01430 Eq 4- –OH O85353:1-215 se 3,5-epimerase, re @C (4-amino) ta duc 4 a G tas dr 4-reductase (A) PE0 e 4 y 4- 65 (E) GDP-Per4Ac C1 h 30 re 10 de 56 GPE06030 Ax –OH@C4 du - E0 Ax ct 3 P –O as G H@ e 1C C4 (A 4 GDP-L-fucose 4 ) GDP-rhamnose C1 GDP-4-keto-3,6- 4 4C dideoxy mannose C1 GDP-6-deoxy-talose 1 5-epimerase, 4-reductase (A) GPE06030 Ax –OH@C4

1 GDP-L-colitose C4

D-enantiomer L-enantiomer HMM profile BLASTp query D-enantiomer / pyranose form unless mentioned otherwise 38 39 Figure S2d GDP- and UDP-linked monosaccharides derived from fructofuranose-6- 40 phosphate. Abbreviated names are used for some of the monosaccharides. Full names of 41 these are given in Supplementary_data.xlsx:Worksheet4.

7

42 43 Figure S2e CMP- and UDP-linked monosaccharides derived from UDP-Glc2NAc (1 of 44 2). Abbreviated names are used for some of the monosaccharides. Full names of these 45 are given in Supplementary_data.xlsx:Worksheet4.

8

46 47 Figure S2f CMP- and UDP-linked monosaccharides derived from UDP-Glc2NAc (2 of 48 2). CMP-Leg5Ac7Ac may be biosynthesized through GDP-linked or UDP-linked 49 intermediates. Abbreviated names are used for some of the monosaccharides. Full names 50 of these are given in Supplementary_data.xlsx:Worksheet4.

9

4 -7-phosphate C1

P63224:1-192 Isomerase

4 D-glycero-a/b-D-manno--7-phosphate C1

Kinase Kinase P76658:1-318 Q9AGY8:1-341

D-glycero-a-D-manno- D-glycero-b-D-manno- 4 4C heptose 1,7-bisphosphate C1 heptose 1,7-bisphosphate 1 Q9AGY5:1-179 Phosphatase P63228:1-191 Phosphatase D-glycero-a-D-manno- D-glycero-b-D-manno- 4 4 heptose 1-phosphate C1 heptose 1-phosphate C1

Q9AGY6:1-230 Guanylyltransferase P76658:344-477 AdenylylT

GDP-D-glycero-a-D- ADP-D-glycero-b- 4 4 manno-heptose C1 D-manno-heptose C1

GPE05020 4,6-Dehydratase (R) P76910:1-310 6-Epimerase Retention of config @ C5 ADP-L-glycero-b-D- GDP-4-keto-6-deoxy-a- 3-Epimerase GDP-4-keto-6-deoxy- 4 manno C1 4 -heptose D-arabino-heptose a-D-lyxo-heptose C1 4 GPE02530 C1 4-Reductase (E) GPE06510 4-Reductase (E) GPE06510 Eq –OH@C4 Eq –OH@C4

GDP-6-deoxy-a- GDP-6-deoxy-a-D- 4 4C D-altro-heptose C1 manno-heptose 1

D-enantiomer L-enantiomer HMM profile BLASTp query Pyranose form unless mentioned otherwise 51 52 Figure S2g ADP- and GDP-linked derived from sedoheptulose-7-phosphate. 53 Abbreviated names are used for some of the monosaccharides. Full names of these are 54 given in Supplementary_data.xlsx:Worksheet4.

10

55 56 Figure S3 Variations in the proteome size of organisms which encode the same number 57 of monosaccharides. Only the smallest and largest proteome sizes are shown. As can be 58 seen, the number of monosaccharides used by an organism is independent of the 59 proteome size. For instance, Helicobacter pylori PNG84A (proteome size = 1353) uses 60 the same number of monosaccharides (7) as Sorangium cellulosum So0157-2 (proteome 61 size = 10480).

11

62 A

B

12

63 Figure S4 (A) The prevalence of each monosaccharide as percentages of the genomes 64 analyzed in this study (viz., 12939) and the number of species covered by these genomes 65 (viz., 3384; Figure S1(a)). The diagonal line is manually drawn to facilitate visualization 66 of deviations. (B) Zoomed in view of the region near the origin in (A). Data for most of 67 the monosaccharides lie on the diagonal suggesting that the sequencing of a large 68 number of strains for a few species has not biased the outcome, with the exception of 69 TDP-/dTDP-Fuc4NAc and UDP-L-Qui2NAc. TDP-/dTDP-Fuc4NAc (a point below the 70 diagonal line) is present in fewer species but represents a larger fraction of genomes 71 since 679 strains of E. coli contain this monosaccharide. Conversely, presence of UDP-L- 72 Qui2NAc (a point above the diagonal line) is highly strain specific. Abbreviated names 73 are used for some of the monosaccharides. Full names of these are given in 74 Supplementary_data.xlsx:Worksheet4.

13

75

76 Figure S5 Setting bit score thresholds for HMM profiles with varying substrate 77 specificities. TrEMBL database was scanned using the profiles shown along the X- and 78 Y-axes in the above scatter plots; for these scans, default values set by HMMer were 79 used for all the parameters. Hits that are common to a pair of profiles (shown along X- 80 and Y-axes) were chosen and bit scores of such hits were plotted against each other. Bit 81 score thresholds (indicated by red lines) were chosen such that a protein is a hit for only 82 one of the two profiles. Threshold was revised for GPE05331 set to exclude PdeG.

14

83 Table S1 Tools and databases used in this study Tool / Version / URL Reference Database Release

Tools installed and run locally on a Linux platform

BLASTp 2.2.31+ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.31/ (1)

HMMER 3.1b2 http://hmmer.org/download.html (2)

MUSCLE 3.8.31 https://www.ebi.ac.uk/Tools/msa/muscle/ (3)

CD-Hit 4.6 http://weizhongli-lab.org/cd-hit/ (4)

Directly accessed from the website or FTP site

UniProt 2018_07 https://www.uniprot.org/ (5)

Genome 2019_03 https://www.ncbi.nlm.nih.gov/genome/ (6)

Not Pubmed https://www.ncbi.nlm.nih.gov/pubmed/ (6) applicable

CATH-Plus 4.2 http://www.cathdb.info/ (7)

Not PDB https://www.rcsb.org/ (8) applicable

Used through the TrEMBL database

Not UniRule https://www.uniprot.org/help/unirule (5) applicable Not SAAS https://www.uniprot.org/help/saas (5) applicable 84 85

15

86 References cited in Table S1 87 88 1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment 89 search tool. J Mol Biol. 1990 Oct 5;215(3):403–10.

90 2. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011 91 Oct;7(10):e1002195.

92 3. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL- 93 EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019 Jul 94 2;47(W1):W636–41.

95 4. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and 96 comparing biological sequences. Bioinformatics. 2010 Mar 1;26(5):680–2.

97 5. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids 98 Res. 2019 Jan 8;47(D1):D506–15.

99 6. NCBI Resource Coordinators. Database resources of the National Center for 100 Biotechnology Information. Nucleic Acids Res. 2018 04;46(D1):D8–13.

101 7. Knudsen M, Wiuf C. The CATH database. Human Genomics. 2010;4(3):207.

102 8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The 103 Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–42.

104

16

105 Table S2 Monosaccharides whose both enantiomers are considered in the present study: 106 comparison of the nucleotide to which the enantiomer is linked and the precursor for its 107 biosynthesis D enantiomer L enantiomer Monosaccharide Nucleotide Precursor Nucleotide Precursor

Rhamnose GDP Glc-1-P TDP, dTDP, UDP Glc-1-P

6-Deoxytalose GDP Glc-1-P TDP, dTDP Glc-1-P

Galactose UDP Glc-1-P GDP Glc-1-P

Fucose TDP, dTDP Glc-1-P GDP Glc-1-P

Fuc2NAc UDP UDP-Glc2NAc UDP UDP-Glc2NAc

Qui2NAc UDP UDP-Glc2NAc UDP UDP-Glc2NAc 108 109

17

110 Flowchart S1 Procedure used to generate HMM profiles

1. Generation of Exp dataset and Exp profile, and setting 푇푒푥푝 Step 1a Consider only those enzymes which are characterized by direct enzyme activity assay Step 1b Remove redundancy (80% sequence identity cutoff) and obtain a multiple sequence alignment (MSA) Step 1c Use the MSA as input to generate an HMM profile Step 1d Score Exp dataset sequences against this HMM profile Step 1e Set the bit score of the lowest scoring sequence as the bit score

threshold for Exp dataset, 푇푒푥푝

2. Generation of Extend dataset and Extend profile, and setting 푇푒푥푡푒푛푑 Step 2a Add sequences that meet any of the following criteria to the Exp dataset

(i) SwissProt entries satisfying the threshold 푇푒푥푝

(ii) SwissProt entries scoring < 푇푒푥푝 provided they show conservation of active site residues. Active site residues were collated based on site directed mutagenesis studies or ligand-bound 3D structures (iii) TrEMBL entries for which molecular function has been inferred from experiments other than direct enzyme assays viz., complementation assays, phenotypic studies, etc. (iv) TrEMBL entries with solved 3D structure (v) FunFam members (CATH database) but only in the case of CDP-glucose 4,6-dehydratase (FunFam 20603) and phosphomannoisomerase family 3 (FunFam 54112) Step 2b Remove redundancy (80% sequence identity cutoff) and obtain a multiple sequence alignment (MSA) Step 2c Use the MSA as input to generate an HMM profile Step 2d Score Extend dataset sequences against this HMM profile Step 2e Set the bit score of the lowest scoring sequence as the bit score threshold for Extend dataset, 푇푒푥푡푒푛푑 111

18

112 Flowchart S2 Precedence rules for assigning annotation to proteins that are hits to two 113 or more profiles and/or BLASTp queries # Case 1 of 14 # specific_aminoTs = [GPE01710, GPE01430, GPE01530] # C3_C4_aminoTs = [GPE01910, GPE01830] # EXPECTED: for a protein which is a hit for one of the specific_aminoTs is expected to be a hit in C3_C4_aminoTs as well as GPE01230

IF (hit for any one of specific_aminoTs) THEN IF (hit for any one of C3_C4_aminoTs) THEN IF (hit for GPE01230) THEN Pass (i.e., this is as expected) ELSE Alert: Hit for one of C3_C4_aminoTs but not GPE01230 ENDIF ELSE Alert: Hit for one of specific_aminoTs but not C3_C4_aminoTs ENDIF ENDIF IF (hit for any one of C3_C4_aminoTs) THEN IF (hit for GPE01230) THEN Pass (as expected) ELSE Alert: Hit for one of C3_C4_aminoTs but not GPE01230 ENDIF ENDIF # Case 2 of 14 IF a protein is a hit for any one of specific_aminoTs, it should be assigned that annotation IF (hit for any one of specific_aminoTs) THEN Assign annotation ENDIF ENDIF # Case 3 of 14 # For a protein which is a hit for one of C3_C4_aminoTs but not any of specific_aminoTs, it should be assigned the former IF (hit for one of C3_C4_aminoTs and not for any of specific_aminoTs) THEN Assign GPE01830/GPE01910 annotation ENDIF

19

# Case 4 of 14 # For a protein which is a hit for GPE00210 # GPE00210 is used only in combination with GPE00231 # A protein which is a hit for GPE00210 is expected to be a hit for GPE00231 also IF (hit for GPE00210) THEN IF (hit for GPE00231) THEN Assign GPE00210 annotation ELSE Alert: Hit for GPE00210 but not GPE00231 ENDIF ENDIF # Case 5 of 14 # For a protein which is a hit for GPE02430 # GPE02430 is used only in combination with GPE02530 # A protein which is a hit for GPE02430 is expected to be a hit for GPE02530 also IF (hit for GPE02430) THEN IF (hit for GPE002530) THEN Assign GPE02430 annotation ELSE Alert: Hit for GPE02430 but not GPE02530 ENDIF ENDIF # Case 6 of 14 # For a protein that is a hit for GPE03130 # GPE03130 is used only in combination with GPE03430 # A protein which is a hit for GPE03130 is expected to be a hit for GPE03430 also IF (hit for GPE03130) THEN IF (hit for GPE03430) THEN Assign GPE03130 annotation ELSE Alert: Hit for GPE03130 but not GPE03430 ENDIF ENDIF

20

# Case 7 of 14 # For a protein that is a hit for GPE03210 # GPE03210 is used only in combination with GPE03430 # A protein which is a hit for GPE03210 is expected to be a hit for GPE03430 also IF (hit for GPE03210) THEN IF (hit for GPE03430) THEN Assign GPE03210 annotation ELSE Alert: Hit for GPE03210 but not GPE03430 ENDIF ENDIF # Case 8 of 14 # For a protein that is a hit for GPE09130 # GPE09130 is used only in combination with GPE09630 # A protein which is a hit for GPE09130 is expected to be a hit for GPE09630 also IF (hit for GPE09130) THEN IF (hit for GPE09630) THEN Assign GPE09130 annotation ELSE Alert: Hit for GPE09130 but not GPE09630 ENDIF ENDIF # Case 9 of 14 # For a protein that is a hit for GPE09230 # GPE09230 is used only in combination with GPE09330 and GPE09630 # A protein which is a hit for GPE09230 is expected to be a hit for GPE09630 also IF (hit for GPE09230) THEN IF (hit for GPE09630) THEN Assign GPE09230 annotation ELSE Alert: Hit for GPE09230 but not GPE09630 ENDIF ENDIF

21

# Case 10 of 14 # For a protein that is a hit for GPE09330 and GPE09630 # GPE09330 is used only in combination with GPE09630 # A protein can be a hit for GPE09330 or GPE09630, but not for both (non- orthologous) IF (hit for GPE09330 AND hit for GPE09630) THEN Alert: Hit for GPE09330 and GPE09630 ENDIF # Case 11 of 14 # For a protein that is a hit for GPE00620 and GPE00720 # GPE00620 is used only in combination with GPE00720 # A protein can be a hit for GPE00620 or GPE00720, but not for both (non- orthologous) IF (hit for GPE00620 AND hit for GPE00720) THEN Alert: Hit for GPE00620 and GPE00720 ENDIF # Case 12 of 14 # Isomerases: GPE07030, GPE07130, GPE07230, and GPE07330 # A protein can be a hit for any one of the above four profiles (non-orthologous) For GPE07030, GPE07130, GPE07230 and GPE07330 IF (hit for more than one) Alert: Hit for (list all profiles which appear as hits from above list)] # Case 13 of 14 # For a protein that is a hit for GPE00430 and GPE00530 # GPE00430 is used only in combination with GPE00530 # A protein can be a hit for GPE00430 or GPE00530, but not for both (non- orthologous) IF (hit for GPE00430 AND hit for GPE00530) THEN Alert: Hit for GPE00430 and GPE00530 ENDIF # Case 14 of 14 # For a protein that is a hit for GPE05332 and Q81A42:1-328 # GPE05332 is used only in combination with Q81A42:1-328 # A protein can be a hit for GPE05332 or Q81A42:1-328, but not for both (non- orthologous) IF (hit for GPE05332 AND hit for Q81A42:1-328) THEN Alert: Hit for GPE05332 and Q81A42:1-328 ENDIF 114

22

115 Research articles which report the characterization of enzymes involved in the 116 biosynthesis of monosaccharides are listed below. Amino acid sequences of these 117 enzymes were either used to generate HMM profiles or used as BLASTp queries. The 118 PubMed Ids of these research articles are included in the GlycoPathDB 119 (www.bio.iitb.ac.in/glycopathdb/) against respective sequence entry. These PubMed Ids 120 are hyperlinked to the corresponding PubMed webpage.

121 1. Wang-Gillam A, Pastuszak I, Elbein AD. A 17-amino acid insert changes UDP-N- 122 acetylhexosamine pyrophosphorylase specificity from UDP-GalNAc to UDP- 123 GlcNAc. J Biol Chem. 1998 Oct 16;273(42):27055–7.

124 2. Watt G, Leoff C, Harper AD, Bar-Peled M. A bifunctional 3,5-epimerase/4-keto 125 reductase for nucleotide-rhamnose synthesis in Arabidopsis. Plant Physiol. 2004 126 Apr;134(4):1337–46.

127 3. Hinderlich S, Stäsche R, Zeitler R, Reutter W. A bifunctional enzyme catalyzes 128 the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. 129 Purification and characterization of. J Biol Chem. 1997 Sep 26;272(39):24313–8.

130 4. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CRH. A formyltransferase 131 required for polymyxin resistance in Escherichia coli and the modification of lipid 132 A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4- 133 deoxy-4-formamido-L-arabinose. J Biol Chem. 2005 Apr 8;280(14):14154–67.

134 5. Yoo H-G, Kwon S-Y, Karki S, Kwon H-J. A new route to dTDP-6-deoxy-l-talose 135 and dTDP-L-rhamnose: dTDP-L-rhamnose. Bioorg Med Chem Lett. 2011 Jul 136 1;21(13):3914–7.

137 6. Yoshida Y, Nakano Y, Nezu T, Yamashita Y, Koga T. A novel NDP-6- 138 deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine 139 diphosphate-D-fucose. J Biol Chem. 1999 Jun 11;274(24):16933–9.

140 7. Swan MK, Hansen T, Schönheit P, Davies C. A novel phosphoglucose isomerase 141 (PGI)/phosphomannose isomerase from the crenarchaeon Pyrobaculum 142 aerophilum is a member of the PGI superfamily: structural evidence at 1.16-A 143 resolution. J Biol Chem. 2004 Sep 17;279(38):39838–45.

144 8. Jiang H, Wang S, Dang L, Wang S, Chen H, Wu Y, et al. A novel short-root gene 145 encodes a glucosamine-6-phosphate acetyltransferase required for maintaining 146 normal root cell shape in rice. Plant Physiol. 2005 May;138(1):232–42.

147 9. DeHaven JE, Robinson KA, Nelson BA, Buse MG. A novel variant of glutamine: 148 -6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively 149 expressed in striated muscle. Diabetes. 2001 Nov;50(11):2419–24.

150 10. Jia X, Kang J, Yin H. A simple and rapid method for measuring α-D- 151 phosphohexomutases activity by using anion-exchange chromatography coupled

23

152 with an electrochemical detector. PeerJ. 2016;4:e1517.

153 11. Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC, Lau PC, et al. A 154 single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three 155 cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem. 2005 Feb 156 11;280(6):4792–802.

157 12. Velloso LM, Bhaskaran SS, Schuch R, Fischetti VA, Stebbins CE. A structural 158 basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc. EMBO Rep. 159 2008 Feb;9(2):199–205.

160 13. Cook PD, Carney AE, Holden HM. Accommodation of GDP-linked in the 161 active site of GDP-perosamine synthase. Biochemistry. 2008 Oct 7;47(40):10685– 162 93.

163 14. Namboori SC, Graham DE. Acetamido biosynthesis in the Euryarchaea. J 164 Bacteriol. 2008 Apr;190(8):2987–96.

165 15. Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED. Acetyltransfer 166 precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in 167 separable active sites of the bifunctional GlmU protein of Escherichia coli. 168 Biochemistry. 1996 Jan 16;35(2):579–85.

169 16. Thoden JB, Holden HM. Active site geometry of glucose-1-phosphate 170 uridylyltransferase. Protein Sci. 2007 Jul;16(7):1379–88.

171 17. Samuel J, Tanner ME. Active site mutants of the “non-hydrolyzing” UDP-N- 172 acetylglucosamine 2-epimerase from Escherichia coli. Biochim Biophys Acta. 173 2004 Jul 1;1700(1):85–91.

174 18. Rashid N, Kanai T, Atomi H, Imanaka T. Among multiple phosphomannomutase 175 gene orthologues, only one gene encodes a protein with phosphoglucomutase and 176 phosphomannomutase activities in Thermococcus kodakaraensis. J Bacteriol. 177 2004 Sep;186(18):6070–6.

178 19. Qu H, Xin Y, Dong X, Ma Y. An rmlA gene encoding d-glucose-1-phosphate 179 thymidylyltransferase is essential for mycobacterial growth. FEMS Microbiol 180 Lett. 2007 Oct;275(2):237–43.

181 20. Merson-Davies LA, Cundliffe E. Analysis of five tylosin biosynthetic genes from 182 the tyllBA region of the Streptomyces fradiae genome. Mol Microbiol. 1994 183 Jul;13(2):349–55.

184 21. Li W, Ulm H, Rausch M, Li X, O’Riordan K, Lee JC, et al. Analysis of the 185 Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of 186 the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme 187 inhibitors. Int J Med Microbiol. 2014 Nov;304(8):958–69.

24

188 22. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. 189 Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, 190 is essential for ascorbic acid biosynthesis. J Biol Chem. 2008 Oct 191 24;283(43):28842–51.

192 23. Bahat-Samet E, Castro-Sowinski S, Okon Y. Arabinose content of extracellular 193 plays a role in cell aggregation of Azospirillum brasilense. FEMS 194 Microbiol Lett. 2004 Aug 15;237(2):195–203.

195 24. Grangeasse C, Obadia B, Mijakovic I, Deutscher J, Cozzone AJ, Doublet P. 196 Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine 197 phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem. 2003 Oct 198 10;278(41):39323–9.

199 25. Sandlin RC, Lampel KA, Keasler SP, Goldberg MB, Stolzer AL, Maurelli AT. 200 Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for 201 correct unipolar localization of IcsA in the bacterial outer membrane. Infect 202 Immun. 1995 Jan;63(1):229–37.

203 26. Kotake T, Takata R, Verma R, Takaba M, Yamaguchi D, Orita T, et al. 204 Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion 205 between. Biochem J. 2009 Nov 11;424(2):169–77.

206 27. Hansen T, Wendorff D, Schönheit P. Bifunctional 207 phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum 208 pernix and Thermoplasma acidophilum constitute a novel enzyme family within 209 the phosphoglucose isomerase superfamily. J Biol Chem. 2004 Jan 210 16;279(3):2262–72.

211 28. Wu B, Zhang Y, Zheng R, Guo C, Wang PG. Bifunctional phosphomannose 212 isomerase/GDP-D-mannose pyrophosphorylase is the point of control for GDP- 213 D-mannose biosynthesis in Helicobacter pylori. FEBS Lett. 2002 May 22;519(1– 214 3):87–92.

215 29. Morrison MJ, Imperiali B. Biochemical analysis and structure determination of 216 bacterial acetyltransferases responsible for the biosynthesis of UDP-N,N’- 217 diacetylbacillosamine. J Biol Chem. 2013 Nov 8;288(45):32248–60.

218 30. Mao W, Daligaux P, Lazar N, Ha-Duong T, Cavé C, van Tilbeurgh H, et al. 219 Biochemical analysis of leishmanial and human GDP-Mannose 220 Pyrophosphorylases and selection of inhibitors as new leads. Sci Rep. 2017 Apr 221 7;7(1):751.

222 31. Sousa SA, Feliciano JR, Pinheiro PF, Leitão JH. Biochemical and functional 223 studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D- 224 mannose 4,6-dehydratase. PLoS One. 2013;8(2):e56902.

225 32. Thoden JB, Holden HM. Biochemical and structural characterization of WlbA

25

226 from Bordetella pertussis and Chromobacterium violaceum: enzymes required for 227 the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. 228 Biochemistry. 2011 Mar 8;50(9):1483–91.

229 33. Granja AT, Popescu A, Marques AR, Sá-Correia I, Fialho AM. Biochemical 230 characterization and phylogenetic analysis of UDP-glucose dehydrogenase from 231 the gellan gum producer Sphingomonas elodea ATCC 31461. Appl Microbiol 232 Biotechnol. 2007 Oct;76(6):1319–27.

233 34. Wang Y, Xu Y, Perepelov AV, Qi Y, Knirel YA, Wang L, et al. Biochemical 234 characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic 235 pathways in Shigella dysenteriae type 7 and Escherichia coli O7. J Bacteriol. 2007 236 Dec;189(23):8626–35.

237 35. Ren Y, Perepelov AV, Wang H, Zhang H, Knirel YA, Wang L, et al. Biochemical 238 characterization of GDP-L-fucose de novo synthesis pathway in fungus 239 Mortierella alpina. Biochem Biophys Res Commun. 2010 Jan 22;391(4):1663–9.

240 36. Hartley MD, Morrison MJ, Aas FE, Børud B, Koomey M, Imperiali B. 241 Biochemical characterization of the O-linked glycosylation pathway in Neisseria 242 gonorrhoeae responsible for biosynthesis of protein glycans containing N,N’- 243 diacetylbacillosamine. Biochemistry. 2011 Jun 7;50(22):4936–48.

244 37. Guo H, Li L, Wang PG. Biochemical characterization of UDP-GlcNAc/Glc 4- 245 epimerase from Escherichia coli O86:B7. Biochemistry. 2006 Nov 246 21;45(46):13760–8.

247 38. Riegert AS, Chantigian DP, Thoden JB, Tipton PA, Holden HM. Biochemical 248 Characterization of WbkC, an N-Formyltransferase from Brucella melitensis. 249 Biochemistry. 2017 Jul 18;56(28):3657–68.

250 39. Miller WL, Wenzel CQ, Daniels C, Larocque S, Brisson J-R, Lam JS. 251 Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6- 252 dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa 253 PAO1. J Biol Chem. 2004 Sep 3;279(36):37551–8.

254 40. Dunsirn MM, Thoden JB, Gilbert M, Holden HM. Biochemical Investigation of 255 Rv3404c from Mycobacterium tuberculosis. Biochemistry. 2017 Jul 256 25;56(29):3818–25.

257 41. Salinger AJ, Brown HA, Thoden JB, Holden HM. Biochemical studies on WbcA, 258 a sugar epimerase from Yersinia enterocolitica. Protein Sci. 2015 259 Oct;24(10):1633–9.

260 42. Tsukioka Y, Yamashita Y, Oho T, Nakano Y, Koga T. Biological function of the 261 dTDP-rhamnose synthesis pathway in Streptococcus mutans. J Bacteriol. 1997 262 Feb;179(4):1126–34.

26

263 43. Kneidinger B, Larocque S, Brisson J-R, Cadotte N, Lam JS. Biosynthesis of 2- 264 acetamido-2,6-dideoxy-L- in bacteria follows a pattern distinct from those 265 of the pathways of 6-deoxy-L-hexoses. Biochem J. 2003 May 1;371(Pt 3):989–95.

266 44. Glaze PA, Watson DC, Young NM, Tanner ME. Biosynthesis of CMP-N,N’- 267 diacetyllegionaminic acid from. Biochemistry. 2008 Mar 11;47(10):3272–82.

268 45. Alam J, Beyer N, Liu H. Biosynthesis of colitose: expression, purification, and 269 mechanistic characterization of GDP-4-keto-6-deoxy-D-mannose-3-dehydrase 270 (ColD) and GDP-L-colitose synthase (ColC). Biochemistry. 2004 Dec 271 28;43(51):16450–60.

272 46. Pfoestl A, Hofinger A, Kosma P, Messner P. Biosynthesis of dTDP-3-acetamido- 273 3,6-dideoxy-alpha-D-galactose in Aneurinibacillus thermoaerophilus L420-91T. J 274 Biol Chem. 2003 Jul 18;278(29):26410–7.

275 47. Sanz S, Bandini G, Ospina D, Bernabeu M, Mariño K, Fernández-Becerra C, et al. 276 Biosynthesis of GDP-fucose and other sugar nucleotides in the blood stages of 277 Plasmodium falciparum. J Biol Chem. 2013 Jun 7;288(23):16506–17.

278 48. Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P. Biosynthesis of 279 nucleotide-activated D-glycero-D-manno-heptose. J Biol Chem. 2001 Jun 280 15;276(24):20935–44.

281 49. Martinez V, Ingwers M, Smith J, Glushka J, Yang T, Bar-Peled M. Biosynthesis 282 of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi 283 Magnaporthe grisea and Botryotinia fuckeliana. J Biol Chem. 2012 Jan 284 6;287(2):879–92.

285 50. Larkin A, Imperiali B. Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, 286 and WbpD: enzymes in the Wbp pathway responsible for O-antigen assembly in 287 Pseudomonas aeruginosa PAO1. Biochemistry. 2009 Jun 16;48(23):5446–55.

288 51. Broach B, Gu X, Bar-Peled M. Biosynthesis of UDP-glucuronic acid and UDP- 289 galacturonic acid in Bacillus cereus subsp. cytotoxis NVH 391-98. FEBS J. 2012 290 Jan;279(1):100–12.

291 52. Mulrooney EF, Poon KKH, McNally DJ, Brisson J-R, Lam JS. Biosynthesis of 292 UDP-N-acetyl-L-fucosamine, a precursor to the biosynthesis of 293 lipopolysaccharide in Pseudomonas aeruginosa serotype O11. J Biol Chem. 2005 294 May 20;280(20):19535–42.

295 53. Morrison MJ, Imperiali B. Biosynthesis of UDP-N,N’-diacetylbacillosamine in 296 Acinetobacter baumannii: Biochemical characterization and correlation to 297 existing pathways. Arch Biochem Biophys. 2013 Aug 1;536(1):72–80.

298 54. Gu X, Lee SG, Bar-Peled M. Biosynthesis of UDP-xylose and UDP-arabinose in 299 Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose

27

300 synthase, and UDP-xylose 4-epimerase. Microbiology. 2011 Jan;157(Pt 1):260–9.

301 55. Harper AD, Bar-Peled M. Biosynthesis of UDP-xylose. Cloning and 302 characterization of a novel Arabidopsis gene family, UXS, encoding soluble and 303 putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant 304 Physiol. 2002 Dec;130(4):2188–98.

305 56. Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, et 306 al. Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia 307 coli. J Bacteriol. 2002 Jan;184(2):363–9.

308 57. Weston A, Stern RJ, Lee RE, Nassau PM, Monsey D, Martin SL, et al. 309 Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber 310 Lung Dis. 1997;78(2):123–31.

311 58. Poolman B, Royer TJ, Mainzer SE, Schmidt BF. utilization in 312 Streptococcus thermophilus: characterization of the genes for 1-epimerase 313 (mutarotase) and UDPglucose 4-epimerase. J Bacteriol. 1990 Jul;172(7):4037–47.

314 59. Niehues R, Hasilik M, Alton G, Körner C, Schiebe-Sukumar M, Koch HG, et al. 315 Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose 316 isomerase deficiency and mannose therapy. J Clin Invest. 1998 Apr 317 1;101(7):1414–20.

318 60. Thoden JB, Reinhardt LA, Cook PD, Menden P, Cleland WW, Holden HM. 319 Catalytic mechanism of perosamine N-acetyltransferase revealed by high- 320 resolution. Biochemistry. 2012 Apr 24;51(16):3433–44.

321 61. Hwang B-Y, Lee H-J, Yang Y-H, Joo H-S, Kim B-G. Characterization and 322 investigation of substrate specificity of the sugar aminotransferase WecE from E. 323 coli K12. Chem Biol. 2004 Jul;11(7):915–25.

324 62. Soldo B, Lazarevic V, Pooley HM, Karamata D. Characterization of a Bacillus 325 subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) 326 encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol. 2002 327 Aug;184(15):4316–20.

328 63. Piacente F, Bernardi C, Marin M, Blanc G, Abergel C, Tonetti MG. 329 Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by 330 the giant DNA virus Mimivirus. Glycobiology. 2014 Jan;24(1):51–61.

331 64. Haft RF, Wessels MR, Mebane MF, Conaty N, Rubens CE. Characterization of 332 cpsF and its product CMP-N-acetylneuraminic acid synthetase, a group B 333 streptococcal enzyme that can function in K1 capsular polysaccharide 334 biosynthesis in Escherichia coli. Mol Microbiol. 1996 Feb;19(3):555–63.

335 65. Tenhaken R, Voglas E, Cock JM, Neu V, Huber CG. Characterization of GDP- 336 mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the

28

337 precursor for the alginate polymer. J Biol Chem. 2011 May 13;286(19):16707–15.

338 66. Badet-Denisot MA, Fernandez-Herrero LA, Berenguer J, Ooi T, Badet B. 339 Characterization of L-glutamine:D-fructose-6-phosphate amidotransferase from an 340 extreme thermophile Thermus thermophilus HB8. Arch Biochem Biophys. 1997 341 Jan 1;337(1):129–36.

342 67. Sundaram AK, Pitts L, Muhammad K, Wu J, Betenbaugh M, Woodard RW, et al. 343 Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from 344 Campylobacter jejuni. Biochem J. 2004 Oct 1;383(Pt 1):83–9.

345 68. Asención Diez MD, Peirú S, Demonte AM, Gramajo H, Iglesias AA. 346 Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and 347 synthase to elucidate glucose-1-phosphate partitioning into oligo- and 348 in Streptomyces coelicolor. J Bacteriol. 2012 Mar;194(6):1485– 349 93.

350 69. Mochalkin I, Lightle S, Zhu Y, Ohren JF, Spessard C, Chirgadze NY, et al. 351 Characterization of substrate binding and catalysis in the potential antibacterial 352 target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci. 353 2007 Dec;16(12):2657–66.

354 70. Melançon CE 3rd, Hong L, White JA, Liu Y, Liu H. Characterization of TDP-4- 355 keto-6-deoxy-D-glucose-3,4-ketoisomerase from the. Biochemistry. 2007 Jan 356 16;46(2):577–90.

357 71. Cuccui J, Milne TS, Harmer N, George AJ, Harding SV, Dean RE, et al. 358 Characterization of the Burkholderia pseudomallei K96243 capsular 359 polysaccharide I coding region. Infect Immun. 2012 Mar;80(3):1209–21.

360 72. McCallum M, Shaw GS, Creuzenet C. Characterization of the dehydratase WcbK 361 and the reductase WcaG involved in. Biochem J. 2011 Oct 15;439(2):235–48.

362 73. Wang Q, Ding P, Perepelov AV, Xu Y, Wang Y, Knirel YA, et al. 363 Characterization of the dTDP-D-fucofuranose biosynthetic pathway in Escherichia 364 coli O52. Mol Microbiol. 2008 Dec;70(6):1358–67.

365 74. Li ZZ, Riegert AS, Goneau M-F, Cunningham AM, Vinogradov E, Li J, et al. 366 Characterization of the dTDP-Fuc3N and dTDP-Qui3N biosynthetic pathways in 367 Campylobacter jejuni 81116. Glycobiology. 2017 Apr 1;27(4):358–69.

368 75. Macpherson DF, Manning PA, Morona R. Characterization of the dTDP-rhamnose 369 biosynthetic genes encoded in the rfb locus of Shigella flexneri. Mol Microbiol. 370 1994 Jan;11(2):281–92.

371 76. Hofmann M, Boles E, Zimmermann FK. Characterization of the essential yeast 372 gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem. 1994 Apr 373 15;221(2):741–7.

29

374 77. Narasaki CT, Mertens K, Samuel JE. Characterization of the GDP-D-mannose 375 biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose 376 biosynthesis. PLoS One. 2011;6(10):e25514.

377 78. Campos M, Martínez-Salazar JM, Lloret L, Moreno S, Núñez C, Espín G, et al. 378 Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from 379 Azotobacter vinelandii. J Bacteriol. 1996 Apr;178(7):1793–9.

380 79. Berg TO, Gurung MK, Altermark B, Smalås AO, Ræder ILU. Characterization of 381 the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish 382 pathogen Moritella viscosa. Carbohydr Res. 2015 Jan 30;402:133–45.

383 80. Gurung MK, Ræder ILU, Altermark B, Smalås AO. Characterization of the sialic 384 acid synthase from Aliivibrio salmonicida suggests a novel pathway for bacterial 385 synthesis of 7-O-acetylated sialic acids. Glycobiology. 2013 Jul;23(7):806–19.

386 81. Kharel MK, Lian H, Rohr J. Characterization of the TDP-D-ravidosamine 387 biosynthetic pathway: one-pot enzymatic synthesis of TDP-D-ravidosamine from 388 thymidine-5-phosphate and glucose-1-phosphate. Org Biomol Chem. 2011 Mar 389 21;9(6):1799–808.

390 82. Suzuki S, Matsuzawa T, Nukigi Y, Takegawa K, Tanaka N. Characterization of 391 two different types of UDP-glucose/-galactose 4-epimerase involved in 392 galactosylation in fission yeast. Microbiology. 2010 Mar;156(Pt 3):708–18.

393 83. Mariño K, Güther MLS, Wernimont AK, Qiu W, Hui R, Ferguson MAJ. 394 Characterization, localization, essentiality, and high-resolution crystal structure of 395 glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. Eukaryot 396 Cell. 2011 Jul;10(7):985–97.

397 84. Zhang L, Muthana MM, Yu H, McArthur JB, Qu J, Chen X. Characterizing non- 398 hydrolyzing Neisseria meningitidis serogroup A. Carbohydr Res. 2016 399 Jan;419:18–28.

400 85. Partha SK, Sadeghi-Khomami A, Slowski K, Kotake T, Thomas NR, Jakeman 401 DL, et al. Chemoenzymatic synthesis, inhibition studies, and X-ray 402 crystallographic analysis of the phosphono analog of UDP-Galp as an inhibitor 403 and mechanistic probe for. J Mol Biol. 2010 Nov 5;403(4):578–90.

404 86. Vijayakumar S, Merkx-Jacques A, Ratnayake DB, Gryski I, Obhi RK, Houle S, et 405 al. Cj1121c, a novel UDP-4-keto-6-deoxy-GlcNAc C-4 aminotransferase essential 406 for protein glycosylation and virulence in Campylobacter jejuni. J Biol Chem. 407 2006 Sep 22;281(38):27733–43.

408 87. Demendi M, Creuzenet C. Cj1123c (PglD), a multifaceted acetyltransferase from 409 Campylobacter jejuni. Biochem Cell Biol. 2009 Jun;87(3):469–83.

410 88. Roper JR, Ferguson MAJ. Cloning and characterisation of the UDP-glucose 4’-

30

411 epimerase of Trypanosoma cruzi. Mol Biochem Parasitol. 2003 Nov;132(1):47– 412 53.

413 89. Mizanur RM, Pohl NL. Cloning and characterization of a heat-stable CMP-N- 414 acylneuraminic acid synthetase from Clostridium thermocellum. Appl Microbiol 415 Biotechnol. 2007 Sep;76(4):827–34.

416 90. Zhao G, Liu J, Liu X, Chen M, Zhang H, Wang PG. Cloning and characterization 417 of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and 418 synthesis of GDP-perosamine in vitro. Biochem Biophys Res Commun. 2007 Nov 419 23;363(3):525–30.

420 91. Potter MD, Lo RY. Cloning and characterization of the galE locus of Pasteurella 421 haemolytica A1. Infect Immun. 1996 Mar;64(3):855–60.

422 92. Lee H-C, Sohng J-K, Kim H-J, Nam D-H, Han J-M, Cho S-S, et al. Cloning and 423 expression of the glucose-1-phosphate thymidylyltransferase gene (gerD) from 424 Streptomyces sp. GERI-155. Mol Cells. 2004 Apr 30;17(2):274–80.

425 93. Karki S, Yoo H-G, Kwon S-Y, Suh J-W, Kwon H-J. Cloning and in vitro 426 characterization of dTDP-6-deoxy-L-talose biosynthetic genes from Kitasatospora 427 kifunensis featuring the dTDP-6-deoxy-L-lyxo-4-hexulose reductase that 428 synthesizes dTDP-6-deoxy-L-talose. Carbohydr Res. 2010 Sep 3;345(13):1958– 429 62.

430 94. Jennings MP, van der Ley P, Wilks KE, Maskell DJ, Poolman JT, Moxon ER. 431 Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its 432 role in lipopolysaccharide biosynthesis. Mol Microbiol. 1993 Oct;10(2):361–9.

433 95. Griffin AM, Poelwijk ES, Morris VJ, Gasson MJ. Cloning of the aceF gene 434 encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase 435 activities involved in acetan biosynthesis in Acetobacter xylinum. FEMS 436 Microbiol Lett. 1997 Sep 15;154(2):389–96.

437 96. Parajuli N, Lee D-S, Lee HC, Liou K, Sohng JK. Cloning, expression and 438 characterization of glucose-1-phosphate thymidylyltransferase (strmlA) from 439 Thermus caldophilus. Biotechnol Lett. 2004 Mar;26(5):437–42.

440 97. Ning B, Elbein AD. Cloning, expression and characterization of the pig liver 441 GDP-mannose pyrophosphorylase. Evidence that GDP-mannose and GDP-Glc 442 pyrophosphorylases are different proteins. Eur J Biochem. 2000 443 Dec;267(23):6866–74.

444 98. Sohng J-K, Kim H, Nam D-H, Lim D-O, Han J-M, Lee H-J, et al. Cloning, 445 expression, and biological function of a dTDP-deoxyglucose epimerase (gerF) 446 gene from Streptomyces sp. GERI-155. Biotechnol Lett. 2004 Feb;26(3):185–91.

447 99. Suryanti V, Nelson A, Berry A. Cloning, over-expression, purification, and

31

448 characterisation of N-acetylneuraminate synthase from Streptococcus agalactiae. 449 Protein Expr Purif. 2003 Feb;27(2):346–56.

450 100. Thorson JS, Kelly TM, Liu HW. Cloning, sequencing, and overexpression in 451 Escherichia coli of the alpha-D-glucose-1-phosphate cytidylyltransferase gene 452 isolated from Yersinia pseudotuberculosis. J Bacteriol. 1994 Apr;176(7):1840–9.

453 101. Schollen E, Pardon E, Heykants L, Renard J, Doggett NA, Callen DF, et al. 454 Comparative analysis of the phosphomannomutase genes PMM1, PMM2 and 455 PMM2psi: the sequence variation in the processed pseudogene is a reflection of 456 the mutations found in the functional gene. Hum Mol Genet. 1998 Feb;7(2):157– 457 64.

458 102. Hung R-J, Chien H-S, Lin R-Z, Lin C-T, Vatsyayan J, Peng H-L, et al. 459 Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas 460 aeruginosa PAO1. J Biol Chem. 2007 Jun 15;282(24):17738–48.

461 103. Zhang P, Shao Z, Jin W, Duan D. Comparative characterization of two GDP- 462 mannose dehydrogenase genes from Saccharina japonica (Laminariales, 463 Phaeophyceae). BMC Plant Biol. 2016 Mar 8;16:62.

464 104. McCallum M, Shaw SD, Shaw GS, Creuzenet C. Complete 6-deoxy-D-altro- 465 heptose biosynthesis pathway from Campylobacter jejuni: more complex than 466 anticipated. J Biol Chem. 2012 Aug 24;287(35):29776–88.

467 105. Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, et al. 468 Complete genome sequence and comparative genomics of Shigella flexneri 469 serotype 2a strain 2457T. Infect Immun. 2003 May;71(5):2775–86.

470 106. Chen Y-Y, Ko T-P, Lin C-H, Chen W-H, Wang AH-J. Conformational change 471 upon product binding to Klebsiella pneumoniae UDP-glucose dehydrogenase: a 472 possible inhibition mechanism for the key enzyme in polymyxin resistance. J 473 Struct Biol. 2011 Sep;175(3):300–10.

474 107. Stern RJ, Lee T-Y, Lee T-J, Yan W, Scherman MS, Vissa VD, et al. Conversion 475 of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene 476 products of Escherichia coli and Mycobacterium tuberculosis. Microbiology. 1999 477 Mar;145 ( Pt 3):663–71.

478 108. Rausch M, Deisinger JP, Ulm H, Müller A, Li W, Hardt P, et al. Coordination of 479 capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat 480 Commun. 2019 Mar 29;10(1):1404.

481 109. Olivier NB, Imperiali B. Crystal structure and catalytic mechanism of PglD from 482 Campylobacter jejuni. J Biol Chem. 2008 Oct 10;283(41):27937–46.

483 110. Riegler H, Herter T, Grishkovskaya I, Lude A, Ryngajllo M, Bolger ME, et al. 484 Crystal structure and functional characterization of a glucosamine-6-phosphate.

32

485 Biochem J. 2012 Apr 15;443(2):427–37.

486 111. Vogan EM, Bellamacina C, He X, Liu H, Ringe D, Petsko GA. Crystal structure at 487 1.8 A resolution of CDP-D-glucose 4,6-dehydratase from Yersinia 488 pseudotuberculosis. Biochemistry. 2004 Mar 23;43(11):3057–67.

489 112. Webb NA, Mulichak AM, Lam JS, Rocchetta HL, Garavito RM. Crystal structure 490 of a tetrameric GDP-D-mannose 4,6-dehydratase from a bacterial. Protein Sci. 491 2004 Feb;13(2):529–39.

492 113. Mehra-Chaudhary R, Mick J, Beamer LJ. Crystal structure of Bacillus anthracis 493 phosphoglucosamine mutase, an enzyme in the peptidoglycan biosynthetic 494 pathway. J Bacteriol. 2011 Aug;193(16):4081–7.

495 114. Christendat D, Saridakis V, Dharamsi A, Bochkarev A, Pai EF, Arrowsmith CH, 496 et al. Crystal structure of dTDP-4-keto-6-deoxy-D-hexulose 3,5-epimerase from 497 Methanobacterium thermoautotrophicum complexed with dTDP. J Biol Chem. 498 2000 Aug 11;275(32):24608–12.

499 115. Gatzeva-Topalova PZ, May AP, Sousa MC. Crystal structure of Escherichia coli 500 ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 501 4-amino-4-deoxy-L-arabinose and polymyxin resistance. Biochemistry. 2004 Oct 502 26;43(42):13370–9.

503 116. Pampa KJ, Lokanath NK, Girish TU, Kunishima N, Rai VR. Crystal structure of 504 product-bound complex of UDP-N-acetyl-d-mannosamine dehydrogenase from 505 Pyrococcus horikoshii OT3. Biochem Biophys Res Commun. 2014 Oct 506 24;453(3):662–7.

507 117. Hung M-N, Rangarajan E, Munger C, Nadeau G, Sulea T, Matte A. Crystal 508 structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an 509 enzyme required for enterobacterial common antigen synthesis. J Bacteriol. 2006 510 Aug;188(15):5606–17.

511 118. Ishiyama N, Creuzenet C, Lam JS, Berghuis AM. Crystal structure of WbpP, a 512 genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa: 513 substrate specificity in udp- 4-epimerases. J Biol Chem. 2004 May 514 21;279(21):22635–42.

515 119. Chen S-C, Huang C-H, Yang CS, Liu J-S, Kuan S-M, Chen Y. Crystal structures 516 of the archaeal UDP-GlcNAc 2-epimerase from Methanocaldococcus jannaschii 517 reveal a conformational change induced by UDP-GlcNAc. Proteins. 2014 518 Jul;82(7):1519–26.

519 120. Gross JW, Hegeman AD, Gerratana B, Frey PA. Dehydration is catalyzed by 520 glutamate-136 and aspartic acid-135 active site residues in Escherichia coli 521 dTDP-glucose 4,6-dehydratase. Biochemistry. 2001 Oct 23;40(42):12497–504.

33

522 121. Chen H, Thomas MG, Hubbard BK, Losey HC, Walsh CT, Burkart MD. 523 Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L- 524 epivancosamine in chloroeremomycin biosynthesis. Proc Natl Acad Sci U S A. 525 2000 Oct 24;97(22):11942–7.

526 122. Ma Y, Mills JA, Belisle JT, Vissa V, Howell M, Bowlin K, et al. Determination of 527 the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and 528 expression of the Mycobacterium tuberculosis gene encoding alpha-D-glucose-1- 529 phosphate thymidylyltransferase. Microbiology. 1997 Mar;143 ( Pt 3):937–45.

530 123. Brokate-Llanos AM, Monje JM, Murdoch PDS, Muñoz MJ. Developmental 531 defects in a Caenorhabditis elegans model for type III galactosemia. Genetics. 532 2014 Dec;198(4):1559–69.

533 124. Fruscione F, Sturla L, Duncan G, Van Etten JL, Valbuzzi P, De Flora A, et al. 534 Differential role of NADP+ and NADPH in the activity and structure of GDP-D- 535 mannose 4,6-dehydratase from two chlorella viruses. J Biol Chem. 2008 Jan 536 4;283(1):184–93.

537 125. Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ. Distinct properties 538 of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of 539 Arabidopsis thaliana. J Biol Chem. 2006 Jun 23;281(25):17276–85.

540 126. Wang L, Huang H, Nguyen HH, Allen KN, Mariano PS, Dunaway-Mariano D. 541 Divergence of biochemical function in the HAD superfamily: Biochemistry. 2010 542 Feb 16;49(6):1072–81.

543 127. Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lütz-Meindl U, et al. 544 Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell 545 walls and severe developmental defects associated with changes in pectic 546 polysaccharides. J Biol Chem. 2011 Nov 18;286(46):39982–92.

547 128. Miyafusa T, Caaveiro JMM, Tanaka Y, Tsumoto K. Dynamic elements govern the 548 catalytic activity of CapE, a capsular polysaccharide-synthesizing enzyme from 549 Staphylococcus aureus. FEBS Lett. 2013 Nov 29;587(23):3824–30.

550 129. Kang J, Xu L, Yang S, Yu W, Liu S, Xin Y, et al. Effect of phosphoglucosamine 551 mutase on biofilm formation and antimicrobial susceptibilities in M. smegmatis 552 glmM gene knockdown strain. PLoS One. 2013;8(4):e61589.

553 130. Butty FD, Aucoin M, Morrison L, Ho N, Shaw G, Creuzenet C. Elucidating the 554 formation of 6-deoxyheptose: biochemical characterization of the. Biochemistry. 555 2009 Aug 18;48(32):7764–75.

556 131. Schoenhofen IC, McNally DJ, Brisson J-R, Logan SM. Elucidation of the CMP- 557 pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N- 558 acetylglucosamine by a single enzymatic reaction. Glycobiology. 2006 559 Sep;16(9):8C-14C.

34

560 132. Gu X, Wages CJ, Davis KE, Guyett PJ, Bar-Peled M. Enzymatic characterization 561 and comparison of various poaceae UDP-GlcA 4-epimerase isoforms. J Biochem. 562 2009 Oct;146(4):527–34.

563 133. Kawamura T, Ishimoto N, Ito E. Enzymatic synthesis of uridine diphosphate N- 564 acetyl-D-mannosaminuronic acid. J Biol Chem. 1979 Sep 10;254(17):8457–65.

565 134. Kaundinya CR, Savithri HS, Rao KK, Balaji PV. EpsM from Bacillus subtilis 168 566 has UDP-2,4,6-trideoxy-2-acetamido-4-amino glucose acetyltransferase activity 567 in vitro. Biochem Biophys Res Commun. 2018 Nov 10;505(4):1057–62.

568 135. Kaundinya CR, Savithri HS, Rao KK, Balaji PV. EpsN from Bacillus subtilis 168 569 has UDP-2,6-dideoxy 2-acetamido 4-keto glucose aminotransferase activity in 570 vitro. Glycobiology. 2018 Oct 1;28(10):802–12.

571 136. Albermann C, Piepersberg W. Expression and identification of the RfbE protein 572 from Vibrio cholerae O1 and its use for the enzymatic synthesis of GDP-D- 573 perosamine. Glycobiology. 2001 Aug;11(8):655–61.

574 137. Viswanathan K, Tomiya N, Park J, Singh S, Lee YC, Palter K, et al. Expression of 575 a functional Drosophila melanogaster CMP-sialic acid synthetase. Differential 576 localization of the Drosophila and human enzymes. J Biol Chem. 2006 Jun 577 9;281(23):15929–40.

578 138. Kim K, Lawrence SM, Park J, Pitts L, Vann WF, Betenbaugh MJ, et al. 579 Expression of a functional Drosophila melanogaster N-acetylneuraminic acid 580 (Neu5Ac) phosphate synthase gene: evidence for endogenous sialic acid 581 biosynthetic ability in insects. Glycobiology. 2002 Feb;12(2):73–83.

582 139. Swartley JS, Ahn JH, Liu LJ, Kahler CM, Stephens DS. Expression of sialic acid 583 and polysialic acid in serogroup B Neisseria meningitidis: divergent transcription 584 of biosynthesis and transport operons through a common promoter region. J 585 Bacteriol. 1996 Jul;178(14):4052–9.

586 140. Weisser P, Krämer R, Sprenger GA. Expression of the Escherichia coli pmi gene, 587 encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization 588 of mannose as a novel growth substrate, which can be used as a selective marker. 589 Appl Environ Microbiol. 1996 Nov;62(11):4155–61.

590 141. Zhang W, Jones VC, Scherman MS, Mahapatra S, Crick D, Bhamidi S, et al. 591 Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the 592 bifunctional glucosamine-1-phosphate acetyltransferase and. Int J Biochem Cell 593 Biol. 2008;40(11):2560–71.

594 142. Sturla L, Bisso A, Zanardi D, Benatti U, De Flora A, Tonetti M. Expression, 595 purification and characterization of GDP-D-mannose 4,6-dehydratase from 596 Escherichia coli. FEBS Lett. 1997 Jul 21;412(1):126–30.

35

597 143. Elling L, Ritter JE, Verseck S. Expression, purification and characterization of 598 recombinant phosphomannomutase and. Glycobiology. 1996 Sep;6(6):591–7.

599 144. Lai X, Wu J, Chen S, Zhang X, Wang H. Expression, purification, and 600 characterization of a functionally active Mycobacterium tuberculosis UDP- 601 glucose pyrophosphorylase. Protein Expr Purif. 2008 Sep;61(1):50–6.

602 145. Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, et al. Facile 603 Modulation of Antibody Fucosylation with Small Molecule Fucostatin Inhibitors 604 and Cocrystal Structure with GDP-Mannose 4,6-Dehydratase. ACS Chem Biol. 605 2016 Oct 21;11(10):2734–43.

606 146. Muñoz R, López R, de Frutos M, García E. First molecular characterization of a 607 uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular 608 biosynthesis in Streptococcus pneumoniae type 1. Mol Microbiol. 1999 609 Jan;31(2):703–13.

610 147. Ma Y, Pan F, McNeil M. Formation of dTDP-rhamnose is essential for growth of 611 mycobacteria. J Bacteriol. 2002 Jun;184(12):3392–5.

612 148. Yin S, Liu M, Kong J-Q. Functional analyses of OcRhS1 and OcUER1 involved 613 in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum. Plant Physiol 614 Biochem. 2016 Dec;109:536–48.

615 149. Oka T, Nemoto T, Jigami Y. Functional analysis of Arabidopsis thaliana 616 RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L- 617 rhamnose conversion. J Biol Chem. 2007 Feb 23;282(8):5389–403.

618 150. Sousa SA, Moreira LM, Leitão JH. Functional analysis of the Burkholderia 619 cenocepacia J2315 BceAJ protein with phosphomannose isomerase and GDP-D- 620 mannose pyrophosphorylase activities. Appl Microbiol Biotechnol. 2008 621 Oct;80(6):1015–22.

622 151. Schoenhofen IC, McNally DJ, Vinogradov E, Whitfield D, Young NM, Dick S, et 623 al. Functional characterization of dehydratase/aminotransferase pairs from 624 Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid 625 and bacillosamine biosynthetic pathways. J Biol Chem. 2006 Jan 13;281(2):723– 626 32.

627 152. Bengoechea JA, Pinta E, Salminen T, Oertelt C, Holst O, Radziejewska-Lebrecht 628 J, et al. Functional characterization of Gne (UDP-N-acetylglucosamine-4- 629 epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of 630 Yersinia enterocolitica serotype O:8. J Bacteriol. 2002 Aug;184(15):4277–87.

631 153. Thuy TTT, Lee HC, Kim C-G, Heide L, Sohng JK. Functional characterizations of 632 novWUS involved in novobiocin biosynthesis from Streptomyces spheroides. 633 Arch Biochem Biophys. 2005 Apr 1;436(1):161–7.

36

634 154. Bar-Peled M, Griffith CL, Doering TL. Functional cloning and characterization of 635 a UDP- glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus 636 neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci U S A. 2001 Oct 637 9;98(21):12003–8.

638 155. Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H. Functional cloning and 639 mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: 640 identification of the amino acid residues essential for the catalysis. Biochim 641 Biophys Acta. 2000 Jul 24;1492(2–3):369–76.

642 156. Mäki M, Järvinen N, Räbinä J, Roos C, Maaheimo H, Renkonen R. Functional 643 expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-D-mannose 644 reductase which synthesizes GDP-rhamnose. Eur J Biochem. 2002 645 Jan;269(2):593–601.

646 157. Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, et al. Functional inactivation of 647 UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf 648 senescence and defence responses in rice. J Exp Bot. 2015 Feb;66(3):973–87.

649 158. Graack HR, Cinque U, Kress H. Functional regulation of glutamine:fructose-6- 650 phosphate aminotransferase 1 (GFAT1) of Drosophila melanogaster in a UDP-N- 651 acetylglucosamine and cAMP-dependent manner. Biochem J. 2001 Dec 1;360(Pt 652 2):401–12.

653 159. van der Beek SL, Le Breton Y, Ferenbach AT, Chapman RN, van Aalten DMF, 654 Navratilova I, et al. GacA is essential for Group A Streptococcus and defines a 655 new class of monomeric dTDP-4-dehydrorhamnose reductases (RmlD). Mol 656 Microbiol. 2015 Dec;98(5):946–62.

657 160. Nassau PM, Martin SL, Brown RE, Weston A, Monsey D, McNeil MR, et al. 658 Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning 659 of. J Bacteriol. 1996 Feb;178(4):1047–52.

660 161. Cook PD, Holden HM. GDP-4-keto-6-deoxy-D-mannose 3-dehydratase, 661 accommodating a sugar substrate in the active site. J Biol Chem. 2008 Feb 662 15;283(7):4295–303.

663 162. Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, et al. GDP-mannose 664 pyrophosphorylase is a genetic determinant of ammonium sensitivity in 665 Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18308–13.

666 163. Jiang H, Ouyang H, Zhou H, Jin C. GDP-mannose pyrophosphorylase is essential 667 for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus. 668 Microbiology. 2008 Sep;154(Pt 9):2730–9.

669 164. Denton H, Fyffe S, Smith TK. GDP-mannose pyrophosphorylase is essential in the 670 bloodstream form of Trypanosoma brucei. Biochem J. 2010 Jan 15;425(3):603– 671 14.

37

672 165. Zhang Q, Hrmova M, Shirley NJ, Lahnstein J, Fincher GB. Gene expression 673 patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley 674 (Hordeum vulgare L.). Biochem J. 2006 Feb 15;394(Pt 1):115–24.

675 166. Nguyen LC, Yamamoto M, Ohnishi-Kameyama M, Andi S, Taguchi F, Iwaki M, 676 et al. Genetic analysis of genes involved in synthesis of modified. Mol Genet 677 Genomics. 2009 Dec;282(6):595–605.

678 167. Kim S-H, Ahn S-H, Lee J-H, Lee E-M, Kim N-H, Park K-J, et al. Genetic analysis 679 of phosphomannomutase/phosphoglucomutase from Vibrio furnissii and 680 characterization of its role in virulence. Arch Microbiol. 2003 Oct;180(4):240–50.

681 168. Marolda CL, Valvano MA. Genetic analysis of the dTDP-rhamnose biosynthesis 682 region of the Escherichia coli VW187 (O7:K1) rfb gene cluster: identification of 683 functional homologs of rfbB and rfbA in the rff cluster and correct location of the 684 rffE gene. J Bacteriol. 1995 Oct;177(19):5539–46.

685 169. Liu B, Chen M, Perepelov AV, Liu J, Ovchinnikova OG, Zhou D, et al. Genetic 686 analysis of the O-antigen of Providencia alcalifaciens O30 and biochemical 687 characterization of a formyltransferase involved in the synthesis of a Qui4N 688 derivative. Glycobiology. 2012 Sep;22(9):1236–44.

689 170. James DBA, Yother J. Genetic and biochemical characterizations of enzymes 690 involved in Streptococcus pneumoniae serotype 2 capsule synthesis demonstrate 691 that Cps2T (WchF) catalyzes the committed step by addition of β1-4 rhamnose, 692 the second sugar residue in the repeat unit. J Bacteriol. 2012 Dec;194(23):6479– 693 89.

694 171. Fang W, Du T, Raimi OG, Hurtado-Guerrero R, Urbaniak MD, Ibrahim AFM, et 695 al. Genetic and structural validation of Aspergillus fumigatus UDP-N- 696 acetylglucosamine pyrophosphorylase as an antifungal target. Mol Microbiol. 697 2013 Aug;89(3):479–93.

698 172. Köplin R, Arnold W, Hötte B, Simon R, Wang G, Pühler A. Genetics of xanthan 699 production in Xanthomonas campestris: the xanA and xanB genes are involved in 700 UDP-glucose and GDP-mannose biosynthesis. J Bacteriol. 1992 Jan;174(1):191– 701 9.

702 173. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, et al. Genome sequence of Shigella 703 flexneri 2a: insights into pathogenicity through comparison with genomes of 704 Escherichia coli K12 and O157. Nucleic Acids Res. 2002 Oct 15;30(20):4432–41.

705 174. Piacente F, Marin M, Molinaro A, De Castro C, Seltzer V, Salis A, et al. Giant 706 DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar. J Biol 707 Chem. 2012 Jan 27;287(5):3009–18.

708 175. Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, et al. Giant 709 virus Megavirus chilensis encodes the biosynthetic pathway for uncommon

38

710 acetamido sugars. J Biol Chem. 2014 Aug 29;289(35):24428–39.

711 176. Plata G, Fuhrer T, Hsiao T-L, Sauer U, Vitkup D. Global probabilistic annotation 712 of metabolic networks enables enzyme discovery. Nat Chem Biol. 2012 713 Oct;8(10):848–54.

714 177. Badet B, Vermoote P, Haumont PY, Lederer F, LeGoffic F. Glucosamine 715 synthetase from Escherichia coli: purification, properties, and glutamine-utilizing 716 site location. Biochemistry. 1987 Apr 7;26(7):1940–8.

717 178. Suzuki N, Nakano Y, Yoshida Y, Nezu T, Terada Y, Yamashita Y, et al. 718 Guanosine diphosphate-4-keto-6-deoxy-d-mannose reductase in the pathway for 719 the synthesis of GDP-6-deoxy-d-talose in Actinobacillus actinomycetemcomitans. 720 Eur J Biochem. 2002 Dec;269(23):5963–71.

721 179. Kaminski L, Eichler J. Haloferax volcanii N-glycosylation: delineating the 722 pathway of dTDP-rhamnose biosynthesis. PLoS One. 2014;9(5):e97441.

723 180. Allard STM, Cleland WW, Holden HM. High resolution X-ray structure of dTDP- 724 glucose 4,6-dehydratase from Streptomyces venezuelae. J Biol Chem. 2004 Jan 725 16;279(3):2211–20.

726 181. Koropatkin NM, Liu H-W, Holden HM. High resolution x-ray structure of 727 tyvelose epimerase from Salmonella typhi. J Biol Chem. 2003 Jun 728 6;278(23):20874–81.

729 182. Dong C, Major LL, Allen A, Blankenfeldt W, Maskell D, Naismith JH. High- 730 resolution structures of RmlC from Streptococcus suis in complex with substrate 731 analogs locate the active site of this class of enzyme. Structure. 2003 732 Jun;11(6):715–23.

733 183. Graninger M, Kneidinger B, Bruno K, Scheberl A, Messner P. Homologs of the 734 Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L- 735 rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus 736 thermoaerophilus DSM 10155. Appl Environ Microbiol. 2002 Aug;68(8):3708– 737 15.

738 184. Mijakovic I, Petranovic D, Deutscher J. How tyrosine phosphorylation affects the 739 UDP-glucose dehydrogenase activity of Bacillus subtilis YwqF. J Mol Microbiol 740 Biotechnol. 2004;8(1):19–25.

741 185. Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM. Human UDP-galactose 742 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active 743 site. J Biol Chem. 2001 May 4;276(18):15131–6.

744 186. Schaper W, Bentrop J, Ustinova J, Blume L, Kats E, Tiralongo J, et al. 745 Identification and biochemical characterization of two functional CMP-sialic acid 746 synthetases in Danio rerio. J Biol Chem. 2012 Apr 13;287(16):13239–48.

39

747 187. Westman EL, McNally DJ, Rejzek M, Miller WL, Kannathasan VS, Preston A, et 748 al. Identification and biochemical characterization of two novel. Biochem J. 2007 749 Jul 1;405(1):123–30.

750 188. Yang T, Echols M, Martin A, Bar-Peled M. Identification and characterization of a 751 strict and a promiscuous. Biochem J. 2010 Sep 1;430(2):275–84.

752 189. Usadel B, Schlüter U, Mølhøj M, Gipmans M, Verma R, Kossmann J, et al. 753 Identification and characterization of a UDP-D-glucuronate 4-epimerase in 754 Arabidopsis. FEBS Lett. 2004 Jul 2;569(1–3):327–31.

755 190. Wu B, Zhang Y, Wang PG. Identification and characterization of GDP-d-mannose 756 4,6-dehydratase and. Biochem Biophys Res Commun. 2001 Jul 13;285(2):364–71.

757 191. Chou WK, Dick S, Wakarchuk WW, Tanner ME. Identification and 758 characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid 759 synthase. J Biol Chem. 2005 Oct 28;280(43):35922–8.

760 192. Wills EA, Roberts IS, Del Poeta M, Rivera J, Casadevall A, Cox GM, et al. 761 Identification and characterization of the Cryptococcus neoformans 762 phosphomannose isomerase-encoding gene, MAN1, and its impact on 763 pathogenicity. Mol Microbiol. 2001 May;40(3):610–20.

764 193. Kawano Y, Sekine M, Ihara M. Identification and characterization of UDP- 765 glucose pyrophosphorylase in cyanobacteria Anabaena sp. PCC 7120. J Biosci 766 Bioeng. 2014 May;117(5):531–8.

767 194. Murkin AS, Chou WK, Wakarchuk WW, Tanner ME. Identification and 768 mechanism of a bacterial hydrolyzing UDP-N-acetylglucosamine. Biochemistry. 769 2004 Nov 9;43(44):14290–8.

770 195. Dadashipour M, Iwamoto M, Hossain MM, Akutsu J-I, Zhang Z, Kawarabayasi Y. 771 Identification of a Direct Biosynthetic Pathway for UDP-N-Acetylgalactosamine 772 from Glucosamine-6-Phosphate in Thermophilic Crenarchaeon Sulfolobus 773 tokodaii. J Bacteriol. 2018 May 15;200(10).

774 196. Feng L, Shou Q, Butcher RA. Identification of a dTDP-rhamnose biosynthetic 775 pathway that oscillates with the molting cycle in Caenorhabditis elegans. 776 Biochem J. 2016 Jun 1;473(11):1507–21.

777 197. Sacchetti S, Bartolucci S, Rossi M, Cannio R. Identification of a GDP-mannose 778 pyrophosphorylase gene from Sulfolobus solfataricus. Gene. 2004 May 779 12;332:149–57.

780 198. Qi X-Q, Sun Q-L, Bai L-P, Shan J-J, Zhang Y, Zhang R, et al. Identification of 781 alpha-D-glucose-1-phosphate cytidylyltransferase involved in Ebosin biosynthesis 782 of Streptomyces sp. 139. Appl Microbiol Biotechnol. 2009 May;83(2):361–8.

40

783 199. Zhang Z, Tsujimura M, Akutsu J, Sasaki M, Tajima H, Kawarabayasi Y. 784 Identification of an extremely thermostable enzyme with dual sugar-1-phosphate 785 nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus 786 tokodaii strain 7. J Biol Chem. 2005 Mar 11;280(10):9698–705.

787 200. Parakkottil Chothi M, Duncan GA, Armirotti A, Abergel C, Gurnon JR, Van Etten 788 JL, et al. Identification of an L-rhamnose synthetic pathway in two 789 nucleocytoplasmic large DNA viruses. J Virol. 2010 Sep;84(17):8829–38.

790 201. Li S, Kang J, Yu W, Zhou Y, Zhang W, Xin Y, et al. Identification of M. 791 tuberculosis Rv3441c and M. smegmatis MSMEG_1556 and essentiality of M. 792 smegmatis MSMEG_1556. PLoS One. 2012;7(8):e42769.

793 202. Nishimoto M, Kitaoka M. Identification of N-acetylhexosamine 1-kinase in the 794 complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium 795 longum. Appl Environ Microbiol. 2007 Oct;73(20):6444–9.

796 203. Albermann C, Beuttler H. Identification of the GDP-N-acetyl-d-perosamine 797 producing enzymes from Escherichia coli O157:H7. FEBS Lett. 2008 Feb 798 20;582(4):479–84.

799 204. Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A, Weynants V, et al. 800 Identification of the perosamine synthetase gene of Brucella melitensis 16M and 801 involvement of lipopolysaccharide O side chain in Brucella survival in mice and in 802 macrophages. Infect Immun. 1998 Nov;66(11):5485–93.

803 205. Videira PA, Cortes LL, Fialho AM, Sá-Correia I. Identification of the pgmG gene, 804 encoding a bifunctional protein with phosphoglucomutase and 805 phosphomannomutase activities, in the gellan gum-producing strain 806 Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol. 2000 807 May;66(5):2252–8.

808 206. Tavares IM, Jolly L, Pompeo F, Leitão JH, Fialho AM, Sá-Correia I, et al. 809 Identification of the Pseudomonas aeruginosa glmM gene, encoding 810 phosphoglucosamine mutase. J Bacteriol. 2000 Aug;182(16):4453–7.

811 207. Shimazu K, Takahashi Y, Uchikawa Y, Shimazu Y, Yajima A, Takashima E, et al. 812 Identification of the Streptococcus gordonii glmM gene encoding 813 phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm 814 formation, and sensitivity to antibiotics. FEMS Immunol Med Microbiol. 2008 815 Jul;53(2):166–77.

816 208. Dong S, Chesnokova ON, Turnbough CLJ, Pritchard DG. Identification of the 817 UDP-N-acetylglucosamine 4-epimerase involved in exosporium protein 818 glycosylation in Bacillus anthracis. J Bacteriol. 2009 Nov;191(22):7094–101.

819 209. Park NY, Lee JH, Kim MW, Jeong HG, Lee BC, Kim TS, et al. Identification of 820 the Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect

41

821 Immun. 2006 Jan;74(1):721–8.

822 210. Kneidinger B, Graninger M, Adam G, Puchberger M, Kosma P, Zayni S, et al. 823 Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing. J 824 Biol Chem. 2001 Feb 23;276(8):5577–83.

825 211. Mariño K, Güther MLS, Wernimont AK, Amani M, Hui R, Ferguson MAJ. 826 Identification, subcellular localization, biochemical properties, and high- 827 resolution crystal structure of Trypanosoma brucei UDP-glucose 828 pyrophosphorylase. Glycobiology. 2010 Dec;20(12):1619–30.

829 212. Li T, Simonds L, Kovrigin EL, Noel KD. In vitro biosynthesis and chemical 830 identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc). J Biol Chem. 831 2014 Jun 27;289(26):18110–20.

832 213. Kaundinya CR, Savithri HS, Krishnamurthy Rao K, Balaji PV. In vitro 833 characterization of N-terminal truncated EpsC from Bacillus subtilis 168, a. Arch 834 Biochem Biophys. 2018 Nov 1;657:78–88.

835 214. Hong L, Zhao Z, Melançon CE 3rd, Zhang H, Liu H. In vitro characterization of 836 the enzymes involved in TDP-D-forosamine biosynthesis in the spinosyn pathway 837 of Saccharopolyspora spinosa. J Am Chem Soc. 2008 Apr 9;130(14):4954–67.

838 215. Lindqvist L, Schweda KH, Reeves PR, Lindberg AA. In vitro synthesis of CDP-d- 839 abequose using Salmonella enzymes of cloned rfb genes. Production of CDP-6- 840 deoxy-D-xylo-4-hexulose, CDP-3,6-dideoxy-D-xylo-4-hexulose and. Eur J 841 Biochem. 1994 Nov 1;225(3):863–72.

842 216. Liu F, Lee HJ, Strynadka NCJ, Tanner ME. Inhibition of Neisseria meningitidis 843 sialic acid synthase by a tetrahedral intermediate analogue. Biochemistry. 2009 844 Oct 6;48(39):9194–201.

845 217. Green OM, McKenzie AR, Shapiro AB, Otterbein L, Ni H, Patten A, et al. 846 Inhibitors of acetyltransferase domain of. Bioorg Med Chem Lett. 2012 Feb 847 15;22(4):1510–9.

848 218. Chen H, Zhao Z, Hallis TM, Guo Z, Liu Hw H. Insights into the Branched-Chain 849 Formation of Mycarose: Methylation Catalyzed by an (S)-Adenosylmethionine- 850 Dependent Methyltransferase We are grateful to Dr. Eugene Seno and the Lilly 851 Research Laboratories for their generous gift of the plasmid pHJL311 and to the 852 National Institutes of Health for grants (GM 35 906 and 54 346). H.-w.L. also 853 thanks the National Institute of General Medical Sciences for a MERIT Award. 854 T.M.H. was a trainee of the National Institute of General Medical Sciences 855 (Biotechnology Training Grant: 2 T32 GM08347). Angew Chem Int Ed Engl. 856 2001 Feb 2;40(3):607–10.

857 219. Hofmeister DL, Thoden JB, Holden HM. Investigation of a sugar N- 858 formyltransferase from the plant pathogen Pantoea ananatis. Protein Sci. 2019

42

859 Apr;28(4):707–16.

860 220. Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B, Polikarpov I. 861 Involvement of the C terminus in intramolecular nitrogen channeling in 862 glucosamine. Structure. 1998 Aug 15;6(8):1047–55.

863 221. Smith RJ, Milewski S, Brown AJ, Gooday GW. Isolation and characterization of 864 the GFA1 gene encoding the glutamine:fructose-6-phosphate amidotransferase of 865 Candida albicans. J Bacteriol. 1996 Apr;178(8):2320–7.

866 222. Zuccotti S, Zanardi D, Rosano C, Sturla L, Tonetti M, Bolognesi M. Kinetic and 867 crystallographic analyses support a sequential-ordered bi bi catalytic mechanism 868 for Escherichia coli glucose-1-phosphate thymidylyltransferase. J Mol Biol. 2001 869 Nov 2;313(4):831–43.

870 223. Koropatkin NM, Cleland WW, Holden HM. Kinetic and structural analysis of 871 alpha-D-Glucose-1-phosphate cytidylyltransferase from Salmonella typhi. J Biol 872 Chem. 2005 Mar 18;280(11):10774–80.

873 224. Bravo IG, Barrallo S, Ferrero MA, Rodríguez-Aparicio LB, Martínez-Blanco H, 874 Reglero A. Kinetic properties of the acylneuraminate cytidylyltransferase from 875 Pasteurella haemolytica A2. Biochem J. 2001 Sep 15;358(Pt 3):585–98.

876 225. Gassner GT, Johnson DA, Liu HW, Ballou DP. Kinetics of the reductive half- 877 reaction of the iron-sulfur flavoenzyme. Biochemistry. 1996 Jun 18;35(24):7752– 878 61.

879 226. Zhou D, Stephens DS, Gibson BW, Engstrom JJ, McAllister CF, Lee FK, et al. 880 Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, 881 and characterization of the phosphoglucomutase gene. J Biol Chem. 1994 Apr 882 15;269(15):11162–9.

883 227. Yang Y-H, Song E, Park S-H, Kim J-N, Lee K, Kim E, et al. Loss of 884 phosphomannomutase activity enhances actinorhodin production in Streptomyces 885 coelicolor. Appl Microbiol Biotechnol. 2010 May;86(5):1485–92.

886 228. Walsh RMJ, Polizzi SJ, Kadirvelraj R, Howard WW, Wood ZA. Man o’ war 887 mutation in UDP-α-D-xylose synthase favors the abortive catalytic cycle and 888 uncovers a latent potential for hexamer formation. Biochemistry. 2015 Jan 889 27;54(3):807–19.

890 229. Weigel TM, Liu LD, Liu HW. Mechanistic studies of the biosynthesis of 3,6- 891 dideoxyhexoses in Yersinia pseudotuberculosis: purification and characterization 892 of. Biochemistry. 1992 Feb 25;31(7):2129–39.

893 230. Hallis TM, Lei Y, Que NL, Liu H. Mechanistic studies of the biosynthesis of 894 paratose: purification and characterization of CDP-paratose synthase. 895 Biochemistry. 1998 Apr 7;37(14):4935–45.

43

896 231. Lei Y, Ploux O, Liu HW. Mechanistic studies on CDP-6-deoxy-L-threo-D- 897 glycero-4-hexulose 3-dehydrase identification of His-220 as the active-site base 898 by chemical modification and site-directed mutagenesis. Biochemistry. 1995 Apr 899 11;34(14):4643–54.

900 232. Pageni BB, Oh T-J, Lee HC, Sohng JK. Metabolic engineering of noviose: 901 heterologous expression of novWUS and generation of a new hybrid antibiotic, 902 noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae 903 YJ003-OTBP1. Biotechnol Lett. 2008 Sep;30(9):1609–15.

904 233. Lee FK, Stephens DS, Gibson BW, Engstrom JJ, Zhou D, Apicella MA. 905 Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose. 906 Infect Immun. 1995 Jul;63(7):2508–15.

907 234. Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, et al. Molecular and 908 functional analysis of phosphomannomutase (PMM) from higher plants and 909 genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in 910 Arabidopsis and Nicotiana benthamiana. Plant J. 2007 Feb;49(3):399–413.

911 235. Woodford CR, Thoden JB, Holden HM. Molecular architecture of an N- 912 formyltransferase from Salmonella enterica O60. J Struct Biol. 2017 913 Dec;200(3):267–78.

914 236. Burgie ES, Holden HM. Molecular architecture of DesI: a key enzyme in the 915 biosynthesis of desosamine. Biochemistry. 2007 Aug 7;46(31):8999–9006.

916 237. Burgie ES, Thoden JB, Holden HM. Molecular architecture of DesV from 917 Streptomyces venezuelae: a PLP-dependent transaminase involved in the 918 biosynthesis of the unusual sugar desosamine. Protein Sci. 2007 May;16(5):887– 919 96.

920 238. García García MI, Lau K, von Itzstein M, García Carmona F, Sánchez Ferrer Á. 921 Molecular characterization of a new N-acetylneuraminate synthase (NeuB1) from 922 Idiomarina loihiensis. Glycobiology. 2015 Jan;25(1):115–23.

923 239. Yeom S-J, Kim Y-S, Lim Y-R, Jeong K-W, Lee J-Y, Kim Y, et al. Molecular 924 characterization of a novel thermostable mannose-6-phosphate isomerase from 925 Thermus thermophilus. Biochimie. 2011 Oct;93(10):1659–67.

926 240. Crater DL, Dougherty BA, van de Rijn I. Molecular characterization of hasC from 927 an operon required for hyaluronic acid synthesis in group A streptococci. 928 Demonstration of UDP-glucose pyrophosphorylase activity. J Biol Chem. 1995 929 Dec 1;270(48):28676–80.

930 241. Ma Z, Fan H, Lu C. Molecular cloning and analysis of the UDP-Glucose 931 Pyrophosphorylase in Streptococcus equi subsp. zooepidemicus. Mol Biol Rep. 932 2011 Apr;38(4):2751–60.

44

933 242. Spicer AP, Kaback LA, Smith TJ, Seldin MF. Molecular cloning and 934 characterization of the human and mouse UDP-glucose dehydrogenase genes. J 935 Biol Chem. 1998 Sep 25;273(39):25117–24.

936 243. Nakata D, Münster AK, Gerardy-Schahn R, Aoki N, Matsuda T, Kitajima K. 937 Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes 938 both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as 939 substrates. Glycobiology. 2001 Aug;11(8):685–92.

940 244. Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, Rouse J, et al. Molecular cloning 941 of human GDP-mannose 4,6-dehydratase and reconstitution of. J Biol Chem. 1998 942 Apr 3;273(14):8193–202.

943 245. Jensen SO, Reeves PR. Molecular evolution of the GDP-mannose pathway genes 944 (manB and manC) in Salmonella enterica. Microbiology. 2001 Mar;147(Pt 945 3):599–610.

946 246. Thoden JB, Holden HM. Molecular structure of WlbB, a bacterial N- 947 acetyltransferase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D- 948 mannuronic acid . Biochemistry. 2010 Jun 8;49(22):4644–53.

949 247. Linton D, Karlyshev AV, Hitchen PG, Morris HR, Dell A, Gregson NA, et al. 950 Multiple N-acetyl synthetase (neuB) genes in Campylobacter 951 jejuni: identification and characterization of the gene involved in sialylation of 952 lipo-. Mol Microbiol. 2000 Mar;35(5):1120–34.

953 248. Humphreys GB, Jud MC, Monroe KM, Kimball SS, Higley M, Shipley D, et al. 954 Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP 955 signaling in the embryonic epidermis of Drosophila. Dev Biol. 2013 Sep 956 15;381(2):434–45.

957 249. Yurist-Doutsch S, Magidovich H, Ventura VV, Hitchen PG, Dell A, Eichler J. N- 958 glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF 959 and AglM. Mol Microbiol. 2010 Feb;75(4):1047–58.

960 250. van Karnebeek CDM, Bonafé L, Wen X-Y, Tarailo-Graovac M, Balzano S, 961 Royer-Bertrand B, et al. NANS-mediated synthesis of sialic acid is required for 962 brain and skeletal development. Nat Genet. 2016 Jul;48(7):777–84.

963 251. Woodford CR, Thoden JB, Holden HM. New role for the ankyrin repeat revealed 964 by a study of the N-formyltransferase from Providencia alcalifaciens. 965 Biochemistry. 2015 Jan 27;54(3):631–8.

966 252. Kowal P, Wang PG. New UDP-GlcNAc C4 epimerase involved in the 967 biosynthesis of. Biochemistry. 2002 Dec 24;41(51):15410–4.

968 253. Babaoglu K, Page MA, Jones VC, McNeil MR, Dong C, Naismith JH, et al. Novel 969 inhibitors of an emerging target in Mycobacterium tuberculosis; substituted

45

970 thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg Med Chem 971 Lett. 2003 Oct 6;13(19):3227–30.

972 254. Kereszt A, Kiss E, Reuhs BL, Carlson RW, Kondorosi A, Putnoky P. Novel rkp 973 gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide 974 production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP- 975 glucose dehydrogenase. J Bacteriol. 1998 Oct;180(20):5426–31.

976 255. Munster A-K, Weinhold B, Gotza B, Muhlenhoff M, Frosch M, Gerardy-Schahn 977 R. Nuclear localization signal of murine CMP-Neu5Ac synthetase includes 978 residues required for both nuclear targeting and enzymatic activity. J Biol Chem. 979 2002 May 31;277(22):19688–96.

980 256. Miles JS, Guest JR. Nucleotide sequence and transcriptional start point of the 981 phosphomannose isomerase gene (manA) of Escherichia coli. Gene. 1984 982 Dec;32(1–2):41–8.

983 257. Hayashi H, Araki Y, Ito E. Occurrence of glucosamine residues with free amino 984 groups in cell wall peptidoglycan from bacilli as a factor responsible for 985 resistance to lysozyme. J Bacteriol. 1973 Feb;113(2):592–8.

986 258. Li S, Wang H, Ma J, Gu G, Chen Z, Guo Z. One-pot four-enzyme synthesis of 987 thymidinediphosphate-l-rhamnose. Chem Commun (Camb). 2016 Nov 988 29;52(97):13995–8.

989 259. Steiner T, Lamerz A-C, Hess P, Breithaupt C, Krapp S, Bourenkov G, et al. Open 990 and closed structures of the UDP-glucose pyrophosphorylase from Leishmania 991 major. J Biol Chem. 2007 Apr 27;282(17):13003–10.

992 260. Breazeale SD, Ribeiro AA, Raetz CRH. Origin of lipid A species modified with 4- 993 amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. 994 An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol 995 Chem. 2003 Jul 4;278(27):24731–9.

996 261. McCarthy TR, Torrelles JB, MacFarlane AS, Katawczik M, Kutzbach B, 997 Desjardin LE, et al. Overexpression of Mycobacterium tuberculosis manB, a 998 phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis 999 in Mycobacterium smegmatis and mycobacterial association with human 1000 macrophages. Mol Microbiol. 2005 Nov;58(3):774–90.

1001 262. Roman E, Roberts I, Lidholt K, Kusche-Gullberg M. Overexpression of UDP- 1002 glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 1003 polysaccharide. Biochem J. 2003 Sep 15;374(Pt 3):767–72.

1004 263. Breazeale SD, Ribeiro AA, Raetz CRH. Oxidative decarboxylation of UDP- 1005 glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid 1006 a species modified with. J Biol Chem. 2002 Jan 25;277(4):2886–96.

46

1007 264. Tonetti M, Zanardi D, Gurnon JR, Fruscione F, Armirotti A, Damonte G, et al. 1008 Paramecium bursaria Chlorella virus 1 encodes two enzymes involved in the 1009 biosynthesis of GDP-L-fucose and GDP-D-rhamnose. J Biol Chem. 2003 Jun 1010 13;278(24):21559–65.

1011 265. Vessal M, Hassid WZ. Partial Purification and Properties of l-Glutamine d- 1012 Fructose 6-Phosphate Amidotransferase from Phaseolus aureus. Plant Physiol. 1013 1972 Jun;49(6):977–81.

1014 266. Li Y, Yu H, Cao H, Muthana S, Chen X. Pasteurella multocida CMP-sialic acid 1015 synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with 1016 improved substrate promiscuity. Appl Microbiol Biotechnol. 2012 1017 Mar;93(6):2411–23.

1018 267. Li Z, Hwang S, Ericson J, Bowler K, Bar-Peled M. Pen and Pal are nucleotide- 1019 sugar dehydratases that convert UDP-GlcNAc to. J Biol Chem. 2015 Jan 1020 9;290(2):691–704.

1021 268. Stray-Pedersen A, Backe PH, Sorte HS, Mørkrid L, Chokshi NY, Erichsen HC, et 1022 al. PGM3 mutations cause a congenital disorder of glycosylation with severe 1023 immunodeficiency and skeletal dysplasia. Am J Hum Genet. 2014 Jul 3;95(1):96– 1024 107.

1025 269. Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, et al. 1026 Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted 1027 by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol 1028 Microbiol. 2012 Aug;85(3):513–34.

1029 270. Nic Lochlainn L, Caffrey P. Phosphomannose isomerase and 1030 phosphomannomutase gene disruptions in Streptomyces nodosus: impact on 1031 amphotericin biosynthesis and implications for glycosylation engineering. Metab 1032 Eng. 2009 Jan;11(1):40–7.

1033 271. Wells TN, Coulin F, Payton MA, Proudfoot AE. Phosphomannose isomerase from 1034 Saccharomyces cerevisiae contains two inhibitory metal ion binding sites. 1035 Biochemistry. 1993 Feb 9;32(5):1294–301.

1036 272. Mizanur RM, Pohl NLB. Phosphomannose isomerase/GDP-mannose 1037 pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the 1038 synthesis of guanidinediphosphate-activated and mannose-containing sugar 1039 nucleotides. Org Biomol Chem. 2009 May 21;7(10):2135–9.

1040 273. Singh B, Lee C-B, Sohng JK. Precursor for biosynthesis of sugar moiety of 1041 doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces 1042 peucetius ATCC 27952. Appl Microbiol Biotechnol. 2010 Feb;85(5):1565–74.

1043 274. Bruender NA, Holden HM. Probing the catalytic mechanism of a C-3’- 1044 methyltransferase involved in the biosynthesis of D-tetronitrose. Protein Sci. 2012

47

1045 Jun;21(6):876–86.

1046 275. Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, et al. Probing the 1047 catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by 1048 kinetic and crystallographic characterization of site-specific mutants. J Mol Biol. 1049 2000 Oct 13;303(1):77–91.

1050 276. Silva E, Marques AR, Fialho AM, Granja AT, Sá-Correia I. Proteins encoded by 1051 Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan 1052 gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase 1053 activities. Appl Environ Microbiol. 2005 Aug;71(8):4703–12.

1054 277. Goon S, Kelly JF, Logan SM, Ewing CP, Guerry P. Pseudaminic acid, the major 1055 modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol 1056 Microbiol. 2003 Oct;50(2):659–71.

1057 278. Deretic V, Gill JF, Chakrabarty AM. Pseudomonas aeruginosa infection in cystic 1058 fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. 1059 Nucleic Acids Res. 1987 Jun 11;15(11):4567–81.

1060 279. Patin D, Bayliss M, Mengin-Lecreulx D, Oyston P, Blanot D. Purification and 1061 biochemical characterisation of GlmU from Yersinia pestis. Arch Microbiol. 2015 1062 Apr;197(3):371–8.

1063 280. Huynh QK, Gulve EA, Dian T. Purification and characterization of 1064 glutamine:fructose 6-phosphate amidotransferase from rat liver. Arch Biochem 1065 Biophys. 2000 Jul 15;379(2):307–13.

1066 281. Roychoudhury S, May TB, Gill JF, Singh SK, Feingold DS, Chakrabarty AM. 1067 Purification and characterization of guanosine diphospho-D-mannose 1068 dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas 1069 aeruginosa. J Biol Chem. 1989 Jun 5;264(16):9380–5.

1070 282. Shinabarger D, Berry A, May TB, Rothmel R, Fialho A, Chakrabarty AM. 1071 Purification and characterization of phosphomannose isomerase-guanosine 1072 diphospho-D-mannose pyrophosphorylase. A bifunctional enzyme in the alginate 1073 biosynthetic pathway of Pseudomonas aeruginosa. J Biol Chem. 1991 Feb 1074 5;266(4):2080–8.

1075 283. Vann WF, Tavarez JJ, Crowley J, Vimr E, Silver RP. Purification and 1076 characterization of the Escherichia coli K1 neuB gene product. Glycobiology. 1077 1997 Jul;7(5):697–701.

1078 284. Fernandez-Sorensen A, Carlson DM. Purification and properties of 1079 phosphoacetylglucosamine mutase. J Biol Chem. 1971 Jun 10;246(11):3485–93.

1080 285. Ding L, Seto BL, Ahmed SA, Coleman WGJ. Purification and properties of the 1081 Escherichia coli K-12 NAD-dependent nucleotide diphosphosugar epimerase,

48

1082 ADP-L-glycero-D-mannoheptose 6-epimerase. J Biol Chem. 1994 Sep 1083 30;269(39):24384–90.

1084 286. Yamamoto K, Moriguchi M, Kawai H, Tochikura T. Purification and some 1085 properties of uridine diphosphate N-acetylglucosamine pyrophosphorylase from 1086 Neurospora crassa. Can J Microbiol. 1979 Dec;25(12):1381–6.

1087 287. Lindquist L, Kaiser R, Reeves PR, Lindberg AA. Purification, characterization 1088 and HPLC assay of Salmonella glucose-1-phosphate thymidylyl-transferase from 1089 the cloned rfbA gene. Eur J Biochem. 1993 Feb 1;211(3):763–70.

1090 288. Tullius MV, Munson RSJ, Wang J, Gibson BW. Purification, cloning, and 1091 expression of a cytidine 5’-monophosphate. J Biol Chem. 1996 Jun 1092 28;271(26):15373–80.

1093 289. Vann WF, Silver RP, Abeijon C, Chang K, Aaronson W, Sutton A, et al. 1094 Purification, properties, and genetic location of Escherichia coli cytidine 5’- 1095 monophosphate N-acetylneuraminic acid synthetase. J Biol Chem. 1987 Dec 1096 25;262(36):17556–62.

1097 290. Jolly L, Ferrari P, Blanot D, Van Heijenoort J, Fassy F, Mengin-Lecreulx D. 1098 Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. Eur J 1099 Biochem. 1999 May;262(1):202–10.

1100 291. Rhomberg S, Fuchsluger C, Rendić D, Paschinger K, Jantsch V, Kosma P, et al. 1101 Reconstitution in vitro of the GDP-fucose biosynthetic pathways of 1102 Caenorhabditis elegans and Drosophila melanogaster. FEBS J. 2006 1103 May;273(10):2244–56.

1104 292. Martínez LI, Piattoni CV, Garay SA, Rodrígues DE, Guerrero SA, Iglesias AA. 1105 Redox regulation of UDP-glucose pyrophosphorylase from Entamoeba histolytica. 1106 Biochimie. 2011 Feb;93(2):260–8.

1107 293. Li P, Liu Q, Huang C, Zhao X, Roland KL, Kong Q. Reversible synthesis of 1108 colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances 1109 induction of cross-immune responses and provides protection against 1110 heterologous Salmonella challenge. Vaccine. 2017 May 15;35(21):2862–9.

1111 294. Li W, Xin Y, McNeil MR, Ma Y. rmlB and rmlC genes are essential for growth of 1112 mycobacteria. Biochem Biophys Res Commun. 2006 Mar 31;342(1):170–8.

1113 295. Dong C, Major LL, Srikannathasan V, Errey JC, Giraud M-F, Lam JS, et al. 1114 RmlC, a C3’ and C5’ carbohydrate epimerase, appears to operate via an 1115 intermediate with an unusual twist boat conformation. J Mol Biol. 2007 Jan 1116 5;365(1):146–59.

1117 296. Giraud MF, Leonard GA, Field RA, Berlind C, Naismith JH. RmlC, the third 1118 enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat Struct

49

1119 Biol. 2000 May;7(5):398–402.

1120 297. Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. Role of Gne and 1121 GalE in the virulence of Aeromonas hydrophila serotype O34. J Bacteriol. 2007 1122 Jan;189(2):540–50.

1123 298. Liu XD, Duan J, Guo LH. Role of phosphoglucosamine mutase on virulence 1124 properties of Streptococcus mutans. Oral Microbiol Immunol. 2009 1125 Aug;24(4):272–7.

1126 299. Pardeshi P, Rao KK, Balaji PV. Rv3634c from Mycobacterium tuberculosis 1127 H37Rv encodes an enzyme with UDP-Gal/Glc and. PLoS One. 1128 2017;12(4):e0175193.

1129 300. Hashimoto H, Sakakibara A, Yamasaki M, Yoda K. Saccharomyces cerevisiae 1130 VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein 1131 glycosylation. J Biol Chem. 1997 Jun 27;272(26):16308–14.

1132 301. Effertz K, Hinderlich S, Reutter W. Selective loss of either the epimerase or kinase 1133 activity of UDP-N-acetylglucosamine. J Biol Chem. 1999 Oct 1;274(40):28771–8.

1134 302. Zaretsky M, Roine E, Eichler J. Sialic Acid-Like Sugars in Archaea: Legionaminic 1135 Acid Biosynthesis in the Halophile Halorubrum sp. PV6. Front Microbiol. 1136 2018;9:2133.

1137 303. Poulin MB, Shi Y, Protsko C, Dalrymple SA, Sanders DAR, Pinto BM, et al. 1138 Specificity of a UDP-GalNAc pyranose-furanose mutase: a potential therapeutic 1139 target for Campylobacter jejuni infections. Chembiochem. 2014 Jan 3;15(1):47– 1140 56.

1141 304. Kiser KB, Bhasin N, Deng L, Lee JC. Staphylococcus aureus cap5P encodes a 1142 UDP-N-acetylglucosamine 2-epimerase with functional redundancy. J Bacteriol. 1143 1999 Aug;181(16):4818–24.

1144 305. van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, et al. 1145 Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional 1146 characterization and lead compound identification. Mol Microbiol. 2019 1147 Apr;111(4):951–64.

1148 306. Song WS, Nam MS, Namgung B, Yoon S. Structural analysis of PseH, the 1149 Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked 1150 glycosylation. Biochem Biophys Res Commun. 2015 Mar 20;458(4):843–8.

1151 307. Thoden JB, Schäffer C, Messner P, Holden HM. Structural analysis of QdtB, an 1152 aminotransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy- 1153 alpha-D-glucose. Biochemistry. 2009 Feb 24;48(7):1553–61.

1154 308. Chantigian DP, Thoden JB, Holden HM. Structural and biochemical

50

1155 characterization of a bifunctional ketoisomerase/N-acetyltransferase from 1156 Shewanella denitrificans. Biochemistry. 2013 Nov 19;52(46):8374–85.

1157 309. Dorfmueller HC, Fang W, Rao FV, Blair DE, Attrill H, van Aalten DMF. 1158 Structural and biochemical characterization of a trapped coenzyme A adduct of 1159 Caenorhabditis elegans glucosamine-6-phosphate N-acetyltransferase 1. Acta 1160 Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):1019–29.

1161 310. Riegert AS, Thoden JB, Schoenhofen IC, Watson DC, Young NM, Tipton PA, et 1162 al. Structural and Biochemical Investigation of PglF from Campylobacter jejuni 1163 Reveals a New Mechanism for a Member of the Short Chain 1164 Dehydrogenase/Reductase Superfamily. Biochemistry. 2017 Nov 14;56(45):6030– 1165 40.

1166 311. Rangarajan ES, Proteau A, Cui Q, Logan SM, Potetinova Z, Whitfield D, et al. 1167 Structural and functional analysis of Campylobacter jejuni PseG: a udp-sugar 1168 hydrolase from the pseudaminic acid biosynthetic pathway. J Biol Chem. 2009 Jul 1169 31;284(31):20989–1000.

1170 312. Schoenhofen IC, Lunin VV, Julien J-P, Li Y, Ajamian E, Matte A, et al. Structural 1171 and functional characterization of PseC, an aminotransferase involved in the 1172 biosynthesis of pseudaminic acid, an essential flagellar modification in 1173 Helicobacter pylori. J Biol Chem. 2006 Mar 31;281(13):8907–16.

1174 313. Thoden JB, Cook PD, Schäffer C, Messner P, Holden HM. Structural and 1175 functional studies of QdtC: an N-acetyltransferase required for the biosynthesis of 1176 dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose. Biochemistry. 2009 Mar 1177 31;48(12):2699–709.

1178 314. Thoden JB, Holden HM. Structural and functional studies of WlbA: A 1179 dehydrogenase involved in the biosynthesis of 2,3-diacetamido-2,3-dideoxy-D- 1180 mannuronic acid . Biochemistry. 2010 Sep 14;49(36):7939–48.

1181 315. Kubiak RL, Phillips RK, Zmudka MW, Ahn MR, Maka EM, Pyeatt GL, et al. 1182 Structural and functional studies on a 3’-epimerase involved in the biosynthesis of 1183 dTDP-6-deoxy-D-. Biochemistry. 2012 Nov 20;51(46):9375–83.

1184 316. Somoza JR, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl ML, et al. 1185 Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase 1186 provides insights into the enzyme’s catalytic mechanism and regulation by. 1187 Structure. 2000 Feb 15;8(2):123–35.

1188 317. Taylor PL, Sugiman-Marangos S, Zhang K, Valvano MA, Wright GD, Junop MS. 1189 Structural and kinetic characterization of the LPS biosynthetic enzyme. 1190 Biochemistry. 2010 Feb 9;49(5):1033–41.

1191 318. Gunawan J, Simard D, Gilbert M, Lovering AL, Wakarchuk WW, Tanner ME, et 1192 al. Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria

51

1193 meningitidis in complex with Mn2+, phosphoenolpyruvate, and N- 1194 acetylmannosaminitol. J Biol Chem. 2005 Feb 4;280(5):3555–63.

1195 319. Lee M, Sousa MC. Structural basis for substrate specificity in ArnB. A key 1196 enzyme in the polymyxin resistance pathway of Gram-negative bacteria. 1197 Biochemistry. 2014 Feb 4;53(4):796–805.

1198 320. Roeben A, Plitzko JM, Körner R, Böttcher UMK, Siegers K, Hayer-Hartl M, et al. 1199 Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from 1200 Saccharomyces cerevisiae. J Mol Biol. 2006 Dec 8;364(4):551–60.

1201 321. Kim H, Choi J, Kim T, Lokanath NK, Ha SC, Suh SW, et al. Structural basis for 1202 the reaction mechanism of UDP-glucose pyrophosphorylase. Mol Cells. 2010 1203 Apr;29(4):397–405.

1204 322. Regni C, Naught L, Tipton PA, Beamer LJ. Structural basis of diverse substrate 1205 recognition by the enzyme PMM/PGM from P. aeruginosa. Structure. 2004 1206 Jan;12(1):55–63.

1207 323. Hwang T-S, Hung C-H, Teo C-F, Chen G-T, Chang L-S, Chen S-F, et al. 1208 Structural characterization of Escherichia coli sialic acid synthase. Biochem 1209 Biophys Res Commun. 2002 Jul 5;295(1):167–73.

1210 324. Pelissier M-C, Lesley SA, Kuhn P, Bourne Y. Structural insights into the catalytic 1211 mechanism of bacterial guanosine-diphospho-D-mannose pyrophosphorylase and 1212 its regulation by divalent ions. J Biol Chem. 2010 Aug 27;285(35):27468–76.

1213 325. Dow GT, Gilbert M, Thoden JB, Holden HM. Structural investigation on WlaRG 1214 from Campylobacter jejuni: A sugar aminotransferase. Protein Sci. 2017 1215 Mar;26(3):586–99.

1216 326. Ishiyama N, Creuzenet C, Miller WL, Demendi M, Anderson EM, Harauz G, et al. 1217 Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for 1218 inverting 4,6-dehydratase activity. J Biol Chem. 2006 Aug 25;281(34):24489–95.

1219 327. Dow GT, Thoden JB, Holden HM. Structural studies on KijD1, a sugar C-3’- 1220 methyltransferase. Protein Sci. 2016 Dec;25(12):2282–9.

1221 328. Gruszczyk J, Fleurie A, Olivares-Illana V, Béchet E, Zanella-Cleon I, Moréra S, et 1222 al. Structure analysis of the Staphylococcus aureus UDP-N-acetyl-mannosamine 1223 dehydrogenase Cap5O involved in capsular polysaccharide biosynthesis. J Biol 1224 Chem. 2011 May 13;286(19):17112–21.

1225 329. Rangarajan ES, Ruane KM, Sulea T, Watson DC, Proteau A, Leclerc S, et al. 1226 Structure and active site residues of PglD, an N-acetyltransferase from the 1227 bacillosamine synthetic pathway required for N-glycan synthesis in 1228 Campylobacter jejuni. Biochemistry. 2008 Feb 19;47(7):1827–36.

52

1229 330. McCoy JG, Bitto E, Bingman CA, Wesenberg GE, Bannen RM, Kondrashov DA, 1230 et al. Structure and dynamics of UDP-glucose pyrophosphorylase from 1231 Arabidopsis thaliana with bound UDP-glucose and UTP. J Mol Biol. 2007 Feb 1232 23;366(3):830–41.

1233 331. Zhang Z, Bulloch EMM, Bunker RD, Baker EN, Squire CJ. Structure and function 1234 of GlmU from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 1235 2009 Mar;65(Pt 3):275–83.

1236 332. Taylor PL, Blakely KM, de Leon GP, Walker JR, McArthur F, Evdokimova E, et 1237 al. Structure and function of sedoheptulose-7-phosphate isomerase, a critical 1238 enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J 1239 Biol Chem. 2008 Feb 1;283(5):2835–45.

1240 333. Mosimann SC, Gilbert M, Dombroswki D, To R, Wakarchuk W, Strynadka NC. 1241 Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase 1242 in the presence and absence of CDP. J Biol Chem. 2001 Mar 16;276(11):8190–6.

1243 334. Thoden JB, Goneau M-F, Gilbert M, Holden HM. Structure of a sugar N- 1244 formyltransferase from Campylobacter jejuni. Biochemistry. 2013 Sep 1245 3;52(35):6114–26.

1246 335. Rocha J, Popescu AO, Borges P, Mil-Homens D, Moreira LM, Sá-Correia I, et al. 1247 Structure of Burkholderia cepacia UDP-glucose dehydrogenase (UGD) BceC and 1248 role of Tyr10 in final hydrolysis of UGD thioester intermediate. J Bacteriol. 2011 1249 Aug;193(15):3978–87.

1250 336. Koropatkin NM, Holden HM. Structure of CDP-D-glucose 4,6-dehydratase from 1251 Salmonella typhi complexed with. Acta Crystallogr D Biol Crystallogr. 2005 1252 Apr;61(Pt 4):365–73.

1253 337. Kedzierski L, Malby RL, Smith BJ, Perugini MA, Hodder AN, Ilg T, et al. 1254 Structure of Leishmania mexicana phosphomannomutase highlights similarities 1255 with human isoforms. J Mol Biol. 2006 Oct 13;363(1):215–27.

1256 338. Mulichak AM, Bonin CP, Reiter W-D, Garavito RM. Structure of the MUR1 1257 GDP-mannose 4,6-dehydratase from Arabidopsis thaliana: implications for ligand 1258 binding and specificity. Biochemistry. 2002 Dec 31;41(52):15578–89.

1259 339. Barton WA, Lesniak J, Biggins JB, Jeffrey PD, Jiang J, Rajashankar KR, et al. 1260 Structure, mechanism and engineering of a nucleotidylyltransferase as a first step 1261 toward glycorandomization. Nat Struct Biol. 2001 Jun;8(6):545–51.

1262 340. Sagurthi SR, Gowda G, Savithri HS, Murthy MRN. Structures of mannose-6- 1263 phosphate isomerase from Salmonella typhimurium bound to metal atoms and 1264 substrate: implications for catalytic mechanism. Acta Crystallogr D Biol 1265 Crystallogr. 2009 Jul;65(Pt 7):724–32.

53

1266 341. Thorson JS, Lo SF, Ploux O, He X, Liu HW. Studies of the biosynthesis of 3,6- 1267 dideoxyhexoses: molecular cloning and characterization of the asc (ascarylose) 1268 region from Yersinia pseudotuberculosis serogroup VA. J Bacteriol. 1994 1269 Sep;176(17):5483–93.

1270 342. Zou L, Zheng RB, Lowary TL. Studies on the substrate specificity of a GDP- 1271 mannose pyrophosphorylase from Salmonella enterica. Beilstein J Org Chem. 1272 2012;8:1219–26.

1273 343. Friedrich V, Janesch B, Windwarder M, Maresch D, Braun ML, Megson ZA, et al. 1274 Tannerella forsythia strains display different cell-surface nonulosonic acids: 1275 biosynthetic pathway characterization and first insight into biological 1276 implications. Glycobiology. 2017 Apr 1;27(4):342–57.

1277 344. Useglio M, Peirú S, Rodríguez E, Labadie GR, Carney JR, Gramajo H. TDP-L- 1278 megosamine biosynthesis pathway elucidation and megalomicin a production in 1279 Escherichia coli. Appl Environ Microbiol. 2010 Jun;76(12):3869–77.

1280 345. Soldo B, Scotti C, Karamata D, Lazarevic V. The Bacillus subtilis Gne (GneA, 1281 GalE) protein can catalyse UDP-glucose as well as. Gene. 2003 Nov 13;319:65–9.

1282 346. Mølhøj M, Verma R, Reiter W-D. The biosynthesis of D-Galacturonate in plants. 1283 functional cloning and characterization of a membrane-anchored UDP-D- 1284 Glucuronate 4-epimerase from Arabidopsis. Plant Physiol. 2004 Jul;135(3):1221– 1285 30.

1286 347. Hwang S, Li Z, Bar-Peled Y, Aronov A, Ericson J, Bar-Peled M. The biosynthesis 1287 of UDP-d-FucNAc-4N-(2)-oxoglutarate (UDP-Yelosamine) in Bacillus cereus 1288 ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp 1289 protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J Biol Chem. 2014 Dec 1290 19;289(51):35620–32.

1291 348. Gu X, Bar-Peled M. The biosynthesis of UDP-galacturonic acid in plants. 1292 Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4- 1293 epimerase. Plant Physiol. 2004 Dec;136(4):4256–64.

1294 349. Hwang H-Y, Horvitz HR. The Caenorhabditis elegans vulval morphogenesis gene 1295 sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially 1296 regulated. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14224–9.

1297 350. Smith DJ, Cooper M, DeTiani M, Losberger C, Payton MA. The Candida albicans 1298 PMM1 gene encoding phosphomannomutase complements a Saccharomyces 1299 cerevisiae sec 53-6 mutation. Curr Genet. 1992 Dec;22(6):501–3.

1300 351. Schoenhofen IC, Vinogradov E, Whitfield DM, Brisson J-R, Logan SM. The 1301 CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel. 1302 Glycobiology. 2009 Jul;19(7):715–25.

54

1303 352. Stevenson G, Lee SJ, Romana LK, Reeves PR. The cps gene cluster of Salmonella 1304 strain LT2 includes a second mannose pathway: sequence of two genes and 1305 relationship to genes in the rfb gene cluster. Mol Gen Genet. 1991 1306 Jun;227(2):173–80.

1307 353. Yu Q, Zheng X. The crystal structure of human UDP-glucose pyrophosphorylase 1308 reveals a latch effect that influences enzymatic activity. Biochem J. 2012 Mar 1309 1;442(2):283–91.

1310 354. Peneff C, Mengin-Lecreulx D, Bourne Y. The crystal structures of Apo and 1311 complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic 1312 mechanism of an amino-sugar N-acetyltransferase. J Biol Chem. 2001 May 1313 11;276(19):16328–34.

1314 355. WILSON DB, HOGNESS DS. THE ENZYMES OF THE GALACTOSE 1315 OPERON IN ESCHERICHIA COLI. I. PURIFICATION AND 1316 CHARACTERIZATION OF URIDINE DIPHOSPHOGALACTOSE 4- 1317 EPIMERASE. J Biol Chem. 1964 Aug;239:2469–81.

1318 356. Mio T, Yabe T, Arisawa M, Yamada-Okabe H. The eukaryotic UDP-N- 1319 acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and 1320 catalytic mechanism. J Biol Chem. 1998 Jun 5;273(23):14392–7.

1321 357. Jolly L, Wu S, van Heijenoort J, de Lencastre H, Mengin-Lecreulx D, Tomasz A. 1322 The femR315 gene from Staphylococcus aureus, the interruption of which results 1323 in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J 1324 Bacteriol. 1997 Sep;179(17):5321–5.

1325 358. Campbell RE, Mosimann SC, van De Rijn I, Tanner ME, Strynadka NC. The first 1326 structure of UDP-glucose dehydrogenase reveals the catalytic residues necessary 1327 for the two-fold oxidation. Biochemistry. 2000 Jun 13;39(23):7012–23.

1328 359. Bonin CP, Freshour G, Hahn MG, Vanzin GF, Reiter W-D. The GMD1 and 1329 GMD2 genes of Arabidopsis encode isoforms of GDP-D-mannose 4,6- 1330 dehydratase with cell type-specific expression patterns. Plant Physiol. 2003 1331 Jun;132(2):883–92.

1332 360. De Reuse H, Labigne A, Mengin-Lecreulx D. The Helicobacter pylori ureC gene 1333 codes for a phosphoglucosamine mutase. J Bacteriol. 1997 Jun;179(11):3488–93.

1334 361. Thoden JB, Holden HM. The molecular architecture of glucose-1-phosphate 1335 uridylyltransferase. Protein Sci. 2007 Mar;16(3):432–40.

1336 362. Thoden JB, Holden HM. The molecular architecture of QdtA, a sugar 3,4- 1337 ketoisomerase from Thermoanaerobacterium thermosaccharolyticum. Protein Sci. 1338 2014 Jun;23(6):683–92.

1339 363. Vann WF, Daines DA, Murkin AS, Tanner ME, Chaffin DO, Rubens CE, et al.

55

1340 The NeuC protein of Escherichia coli K1 is a UDP N-acetylglucosamine 2- 1341 epimerase. J Bacteriol. 2004 Feb;186(3):706–12.

1342 364. Mergaert P, Van Montagu M, Holsters M. The nodulation gene nolK of 1343 Azorhizobium caulinodans is involved in the formation of. FEBS Lett. 1997 Jun 1344 9;409(2):312–6.

1345 365. Piacente F, De Castro C, Jeudy S, Gaglianone M, Laugieri ME, Notaro A, et al. 1346 The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers. 1347 J Biol Chem. 2017 May 5;292(18):7385–94.

1348 366. Coleman WGJ. The rfaD gene codes for ADP-L-glycero-D-mannoheptose-6- 1349 epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol 1350 Chem. 1983 Feb 10;258(3):1985–90.

1351 367. Schmidt M, Arnold W, Niemann A, Kleickmann A, Pühler A. The Rhizobium 1352 meliloti pmi gene encodes a new type of phosphomannose isomerase. Gene. 1992 1353 Dec 1;122(1):35–43.

1354 368. Hwang H-Y, Horvitz HR. The SQV-1 UDP-glucuronic acid decarboxylase and the 1355 SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect 1356 Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc 1357 Natl Acad Sci U S A. 2002 Oct 29;99(22):14218–23.

1358 369. Beyer S, Mayer G, Piepersberg W. The StrQ protein encoded in the gene cluster 1359 for 5’-hydroxystreptomycin of Streptomyces glaucescens GLA.0 is a alpha-D- 1360 glucose-1-phosphate cytidylyltransferase (CDP-D-glucose synthase). Eur J 1361 Biochem. 1998 Dec 15;258(3):1059–67.

1362 370. King JD, Poon KKH, Webb NA, Anderson EM, McNally DJ, Brisson J-R, et al. 1363 The structural basis for catalytic function of GMD and RMD, two closely related 1364 enzymes from the GDP-D-rhamnose biosynthesis pathway. FEBS J. 2009 1365 May;276(10):2686–700.

1366 371. Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, et al. 1367 The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form 1368 trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation 1369 reveals a hierarchy in parasite protein glycosylation. J Biol Chem. 2008 Jun 1370 6;283(23):16147–61.

1371 372. Cleasby A, Wonacott A, Skarzynski T, Hubbard RE, Davies GJ, Proudfoot AE, et 1372 al. The x-ray crystal structure of phosphomannose isomerase from Candida 1373 albicans at 1.7 angstrom resolution. Nat Struct Biol. 1996 May;3(5):470–9.

1374 373. Davis ML, Thoden JB, Holden HM. The x-ray structure of dTDP-4-keto-6-deoxy- 1375 D-glucose-3,4-ketoisomerase. J Biol Chem. 2007 Jun 29;282(26):19227–36.

1376 374. Kepes F, Schekman R. The yeast SEC53 gene encodes phosphomannomutase. J

56

1377 Biol Chem. 1988 Jul 5;263(19):9155–61.

1378 375. Kneidinger B, O’Riordan K, Li J, Brisson J-R, Lee JC, Lam JS. Three highly 1379 conserved proteins catalyze the conversion of. J Biol Chem. 2003 Feb 1380 7;278(6):3615–27.

1381 376. Zimmer AL, Thoden JB, Holden HM. Three-dimensional structure of a sugar N- 1382 formyltransferase from Francisella tularensis. Protein Sci. 2014 Mar;23(3):273– 1383 83.

1384 377. Nakano Y, Suzuki N, Yoshida Y, Nezu T, Yamashita Y, Koga T. Thymidine 1385 diphosphate-6-deoxy-L-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy- 1386 L-talose from Actinobacillus actinomycetemcomitans. J Biol Chem. 2000 Mar 1387 10;275(10):6806–12.

1388 378. Creuzenet C, Lam JS. Topological and functional characterization of WbpM, an 1389 inner membrane UDP-GlcNAc C6 dehydratase essential for lipopolysaccharide 1390 biosynthesis in Pseudomonas aeruginosa. Mol Microbiol. 2001 Sep;41(6):1295– 1391 310.

1392 379. Allard STM, Beis K, Giraud MF, Hegeman AD, Gross JW, Wilmouth RC, et al. 1393 Toward a structural understanding of the dehydratase mechanism. Structure. 2002 1394 Jan;10(1):81–92.

1395 380. Cook PD, Kubiak RL, Toomey DP, Holden HM. Two site-directed mutations are 1396 required for the conversion of a sugar dehydratase into an aminotransferase. 1397 Biochemistry. 2009 Jun 16;48(23):5246–53.

1398 381. Li O, Qian C-D, Zheng D-Q, Wang P-M, Liu Y, Jiang X-H, et al. Two UDP- 1399 glucuronic acid decarboxylases involved in the biosynthesis of a bacterial 1400 exopolysaccharide in Paenibacillus elgii. Appl Microbiol Biotechnol. 2015 1401 Apr;99(7):3127–39.

1402 382. Köplin R, Brisson JR, Whitfield C. UDP-galactofuranose precursor required for 1403 formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype 1404 O1 is synthesized by the product of the rfbDKPO1 gene. J Biol Chem. 1997 Feb 1405 14;272(7):4121–8.

1406 383. Daenzer JMI, Sanders RD, Hang D, Fridovich-Keil JL. UDP-galactose 4’- 1407 epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the 1408 development of Drosophila melanogaster. PLoS Genet. 2012;8(5):e1002721.

1409 384. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M. 1410 UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science. 1999 1411 May 21;284(5418):1372–6.

1412 385. Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, et al. UDP-glucose 1413 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for

57

1414 cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell. 2007 1415 May;19(5):1565–79.

1416 386. Sen M, Shah B, Rakshit S, Singh V, Padmanabhan B, Ponnusamy M, et al. UDP- 1417 glucose 4, 6-dehydratase activity plays an important role in maintaining cell wall 1418 integrity and virulence of Candida albicans. PLoS Pathog. 2011 1419 Nov;7(11):e1002384.

1420 387. Nakano K, Omura Y, Tagaya M, Fukui T. UDP-glucose pyrophosphorylase from 1421 potato tuber: purification and characterization. J Biochem. 1989 Sep;106(3):528– 1422 32.

1423 388. Coyne MJ, Fletcher CM, Reinap B, Comstock LE. UDP-glucuronic acid 1424 decarboxylases of Bacteroides fragilis and their prevalence in bacteria. J 1425 Bacteriol. 2011 Oct;193(19):5252–9.

1426 389. Bulik DA, van Ophem P, Manning JM, Shen Z, Newburg DS, Jarroll EL. UDP-N- 1427 acetylglucosamine pyrophosphorylase, a key enzyme in encysting Giardia, is 1428 allosterically regulated. J Biol Chem. 2000 May 12;275(19):14722–8.

1429 390. Majumdar S, Ghatak J, Mukherji S, Bhattacharjee H, Bhaduri A. UDPgalactose 4- 1430 epimerase from Saccharomyces cerevisiae. A bifunctional enzyme with aldose 1- 1431 epimerase activity. Eur J Biochem. 2004 Feb;271(4):753–9.

1432 391. Bosco MB, Machtey M, Iglesias AA, Aleanzi M. UDPglucose pyrophosphorylase 1433 from Xanthomonas spp. Characterization of the enzyme kinetics, structure and 1434 inactivation related to oligomeric dissociation. Biochimie. 2009 Feb;91(2):204–13.

1435 392. Telser A, Sussman M. Uridine diphosphate galactose-4-epimerase, a 1436 developmentally regulated enzyme in the cellular slime mold Dictyostelium 1437 discoideum. J Biol Chem. 1971 Apr 10;246(7):2252–7.

1438 393. Blankenfeldt W, Kerr ID, Giraud M-F, McMiken HJ, Leonard G, Whitfield C, et 1439 al. Variation on a theme of SDR. dTDP-6-deoxy-L- lyxo-4-hexulose reductase 1440 (RmlD) shows a new Mg2+-dependent dimerization mode. Structure. 2002 1441 Jun;10(6):773–86.

1442 394. Zhang H, Zhou Y, Bao H, Liu H. Vi antigen biosynthesis in Salmonella typhi: 1443 characterization of. Biochemistry. 2006 Jul 4;45(26):8163–73.

1444 395. Zhao X, Creuzenet C, Bélanger M, Egbosimba E, Li J, Lam JS. WbpO, a UDP-N- 1445 acetyl-D-galactosamine dehydrogenase from Pseudomonas aeruginosa serotype 1446 O6. J Biol Chem. 2000 Oct 27;275(43):33252–9.

1447 396. Dummitt B, Micka WS, Chang Y-H. Yeast glutamine-fructose-6-phosphate 1448 aminotransferase (Gfa1) requires methionine aminopeptidase activity for proper 1449 function. J Biol Chem. 2005 Apr 8;280(14):14356–60.

58