Ep 0503832 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 0503832 B1 Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 503 832 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) lntCI.6: C12P 1/00, C12P 19/24 of the grant of the patent: //(C12P1/00, C12R1:26) 12.06.1996 Bulletin 1996/24 (21) Application number: 92301853.5 (22) Date of filing: 04.03.1992 (54) Process for the preparation of 13C-labelled compounds Verfahren zur Herstellung von 13C-markierten Verbindungen Procede de preparation de composes 1 3C marques (84) Designated Contracting States: (74) Representative: Harrison, David Christopher et al DE FR GB MEWBURN ELLIS York House (30) Priority: 08.03.1991 JP 67779/91 23 Kingsway 27.02.1992 JP 75612/92 London WC2B 6HP (GB) (43) Date of publication of application: (56) References cited: 16.09.1992 Bulletin 1992/38 WO-A-89/00201 (73) Proprietor: TOKYO GAS CO., LTD. • PATENT ABSTRACTS OF JAPAN, unexamined Minato-ku Tokyo 105 (JP) applications, C field, vol. 14, no. 318, 09 July 1990, The Patent Office Japanese Govt.; p. 122 (72) Inventors: C 738 • Kato, Nobuo • PATENT ABSTRACTS OF JAPAN, unexamined Tottori-shi, Tottori-ken (JP) applications, C field, vol. 1 5, no. 64, February 1 5, • Sato, Yoshiyuki 1991; THE PATNENT OFFICE JAPANESE Tokyo (JP) GOVERNMENT, p. 78 C 806 • Shibata, Kunihiko Funabashi-shi, Chiba-ken (JP) DO CM CO 00 CO o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. a. 99(1) European Patent Convention). LU Printed by Jouve, 75001 PARIS (FR) EP 0 503 832 B1 Description The present invention relates to a process for preparing compounds labelled with 13C in a specific carbon position. 1 3C-labelled fructose 6-phosphate, for example, is known to be prepared by a chemical synthesis process, in which 5 a large number of reaction steps are required in order to obtain 13C-labelled fructose 6-phosphate labelled with a specifically positioned 13C, because fructose has four asymmetric carbon atoms, giving 16 different optical isomers, resulting in a product having not very high optical purity. JP-A 130692/87 discloses a process for producing isotope labelled biochemicals which comprises cultivating a methylotrophic microorganism in a nutrient medium containing a growth carbon source comprising a 13C-|-compound. 10 JP-A 130692/87 discloses a bioconversion process which comprises cultivating a methylotrophic microorganism (or cell extract thereof) in a nutrient medium containing an assimilable Cn-compound and a 13C1 -compound to produce an accumulated quantity of 13C-labelled Cn+1 -condensation product, wherein n is an integer with a value of at least 2. JP-A-1 30692/87 discloses on page 5, right upper column, lines 8-1 2, that the term "ribulose monophosphate path- way" (RMP) as employed herein refers to the biochemical cycle in which three molecules of formaldehyde are con- 's densed to produce either one molecule of pyruvate or one molecule of dihydroxyacetone phosphate, and further teach- es on page 7, left lower column, line 16 to right lower column, line 5, that hexulose 6-phosphate is the product of hexulose phosphate synthase activity and that hexulose phosphate isomerase converts hexulose 6-phosphate to glu- cose 6-phosphate. However, that disclosure neither teaches nor suggest a process for preparing 13C-labelled fructose 6-phosphate 20 or 13C-labelled glucose 6-phosphate specifically labelled with 13C in a carbon position C-l from ribose 5-phosphate and 13C-labelled methanol or 13C-labelled formaldehyde in the presence of a specific series of enzymes. JP-A-1 30692/87 exemplifies preparation of an exopolysaccharide containing 13C-glucose as a main constituent by carrying out fermentation using 13C-methanol as a growth carbon source, resulting in producing 13C-glucose uni- formly labelled with 13C it being impossible to obtain 13C-labelled glucose, specifically labelled with 13C in a carbon 25 position C-1. WO-A-89/00201 discloses the production of isotopically-labelled (eg. 13C) organic compounds in cell culture using a mutart cell strain capable of producing the organic compound of interest and at least one simple labelled inorganic nutrient as the isotope source. The use of 13C-labelled compounds with 13C in a specific carbon position makes it possible in the case for studies 30 on a biological energy metabolism pathway by use of nuclear magnetic resonance apparatus, mass spectrometer, etc. to provide more usefuf qualitative and quantitative information than in the case of use of compounds uniformly labelled with 13C, 14C-labelled compounds, and the like; thus, compounds labelled with 13C in a specific carbon position are applicable to various fields ranging from studies on biological reactions to medical services. Development of an indus- trially advantageous process for the preparation thereof is highly desirable. 35 For example, fructose 6-phosphate or glucose 6-phosphate is a metabolic intermediate in the glycolitic pathway and is useful for studies of the biological energy metabolism pathway, and 13C-labelled fructose 6-phosphate or Re- labelled glucose 6-phosphate specifically labelled with 13C in a specific carbon position is preferable to uniformly la- belled ones for tracing the conversion of fructose 6-phosphate or glucose 6-phosphate in vivo by use of a mass spec- trometer, nuclear magnetic resonance apparatus, etc. 40 It is an object of the present invention to provide an industrially advantageous process for the preparation of Re- labelled compounds labelled with 13C in a specific carbon position, for example, 13C-labelled fructose 6-phosphate or 13C-labelled glucose 6-phosphate specifically labelled with 13C in carbon position C-1. A first aspect of the present invention provides a process for preparing a 13C-labelled compound which comprises reacting an alcohol 13C-labelled carbon source compound and a substrate in the presence of an enzyme system con- 45 sisting of oxidase belonging to EC1 group and capable of converting the alcohol 13C-labelled carbon source compound to an aldehyde 13C-labelled carbon source compound, lyase belonging to EC4 group and capable of synthesizing a carbon-carbon bond and at least one of isomerases belonging to EC5 group and capable of isomerizing substrates to obtain a 13C-labelled compound specifically labelled with 13C in a specific carbon position. A second aspect of the present invention provides a process for preparing a 13C-labelled compound which corn- so prises isomerizing a substrate in the presence of a first isomerase to form an isomerized substrate, reacting the isomer- ized substrate in the presence of lyase with an aldehyde 13C-labelled carbon source compound formed by oxidizing an alcohol 13C-labelled carbon source compound in the presence of oxidase to obtain a condensate labelled with 13C in a specific carbon position, and isomerizing the condensate in the presence of a second isomerase to obtain a first isomer labelled with 13C in a specific carbon position and preferably further comprises isomerizing the first isomer in 55 the presence of a third isomerase to obtain a second isomer, preferably said oxidase being used in combination with catalase and hydrogen peroxide. A preferred embodiment of the first aspect of the present invention provides a process comprises reacting ribose 5-phosphate with 13C-labelled methanol in the presence of alcohol oxidase and of a formaldehyde-fixing enzyme sys- 2 EP 0 503 832 B1 tem obtained from microorganisms growing on methanol and consisting of phosphoriboisomerase, hexulose phosphate synthase and phosphohexuloisomerase to obtain 13C-labelled fructose 6-phosphate specifically labelled with 13C in carbon position C-1 . A preferred embodiment of the second aspect of the present invention provides a process comprises isomerizing 5 ribose 5-phosphate in the presence of phosphoriboisomerase to form ribulose 5-phosphate, reacting the ribulose 5-phosphate in the presence of hexulose phosphate synthase with 13C-labelled formaldehyde formed by oxidizing Re- labelled methanol in the presence of alcohol oxidase to form 13C-labelled hexulose 6-phosphate, and isomerizing Re- labelled hexulose 6-phosphate in the presence of phosphohexuloisomerase to form RC-labelled fructose 6-phosphate specifically labelled with 13C in carbon position C-1 . 10 Another preferred embodiment of the present invention provides a process comprises reacting ribose 5-phosphate with RC-labelled methanol in the presence of alcohol oxidase and of a formaldehyde-fixing enzyme system obtained from microorganisms growing on methanol and consisting of phosphoriboisomerase, hexulose phosphate synthase, phosphohexuloisomerase and phosphoglucoisomerase to obtain RC-labelled glucose 6-phosphate specifically la- belled with RC in carbon position C-1 . is Another preferred embodiment of the second aspect of the present invention provides a process comprises isomer- izing ribose 5-phosphate in the presence of phosphoriboisomerase to form ribulose 5-phosphate, reacting the ribulose 5-phosphate in the presence of hexulose phosphate synthase with RC-labelled formaldehyde formed by oxidizing Re- labelled methanol in the presence of alcohol oxidase to form RC-labelled hexulose 6-phosphate, isomerizing Re- labelled hexulose 6-phosphate in the presence of phosphohexuloisomerase
Recommended publications
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Contig Protein Description Symbol Anterior Posterior Ratio
    Table S2. List of proteins detected in anterior and posterior intestine pooled samples. Data on protein expression are mean ± SEM of 4 pools fed the experimental diets. The number of the contig in the Sea Bream Database (http://nutrigroup-iats.org/seabreamdb) is indicated. Contig Protein Description Symbol Anterior Posterior Ratio Ant/Pos C2_6629 1,4-alpha-glucan-branching enzyme GBE1 0.88±0.1 0.91±0.03 0.98 C2_4764 116 kDa U5 small nuclear ribonucleoprotein component EFTUD2 0.74±0.09 0.71±0.05 1.03 C2_299 14-3-3 protein beta/alpha-1 YWHAB 1.45±0.23 2.18±0.09 0.67 C2_268 14-3-3 protein epsilon YWHAE 1.28±0.2 2.01±0.13 0.63 C2_2474 14-3-3 protein gamma-1 YWHAG 1.8±0.41 2.72±0.09 0.66 C2_1017 14-3-3 protein zeta YWHAZ 1.33±0.14 4.41±0.38 0.30 C2_34474 14-3-3-like protein 2 YWHAQ 1.3±0.11 1.85±0.13 0.70 C2_4902 17-beta-hydroxysteroid dehydrogenase 14 HSD17B14 0.93±0.05 2.33±0.09 0.40 C2_3100 1-acylglycerol-3-phosphate O-acyltransferase ABHD5 ABHD5 0.85±0.07 0.78±0.13 1.10 C2_15440 1-phosphatidylinositol phosphodiesterase PLCD1 0.65±0.12 0.4±0.06 1.65 C2_12986 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 PLCD1 0.76±0.08 1.15±0.16 0.66 C2_4412 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2 PLCG2 1.13±0.08 2.08±0.27 0.54 C2_3170 2,4-dienoyl-CoA reductase, mitochondrial DECR1 1.16±0.1 0.83±0.03 1.39 C2_1520 26S protease regulatory subunit 10B PSMC6 1.37±0.21 1.43±0.04 0.96 C2_4264 26S protease regulatory subunit 4 PSMC1 1.2±0.2 1.78±0.08 0.68 C2_1666 26S protease regulatory subunit 6A PSMC3 1.44±0.24 1.61±0.08
    [Show full text]
  • Biosynthèse De Nouveaux Dérivés De L'alpha-Bisabolol Par Une Approche
    THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury Mme Véronique DE BERARDINIS, Rapporteure, Chercheur CEA M. Jean-Etienne BASSARD, Rapporteur, Chargé de Recherche, CNRS Mme Danièle WERCK-REICHHART, Examinatrice, Directeur de Recherche Emérite, CNRS M. Gilles TRUAN, Directeur de thèse, Directeur de Recherche, CNRS Mme Magali REMAUD-SIMEON, Co-directrice de thèse, Professeur des Universités, INSA Mme Fayza DABOUSSI, Présidente, Directeur de Recherche INRAE 2 Author: Arthur Sarrade-Loucheur Year: 2020 Biosynthesis of new α-bisabolol derivatives through a synthetic biology approach The rise of synthetic biology now enables the production of new to nature molecules. In the frame of this thesis we focused on the diversification of the (+)-epi-α-bisabolol scaffold. This molecule coming from the plant Lippia dulcis belongs to the vast family of sesquiterpenes. While sesquiterpenes possess diverse biological activities, (+)-epi-α- bisabolol is the precursor of hernandulcin, an intense sweetener. However, the last oxidative step(s) of the hernandulcin biosynthetic pathway remain elusive. Rather than seeking the native oxidase responsible for hernandulcin synthesis among L. dulcis enzymes we turned our choice towards oxidative enzymes known to be promiscuous and that could functionalize (+)-epi-α-bisabolol in order to i) generate diversity from (+)-epi-α-bisabolol; ii) hopefully identify an oxidative enzyme catalyzing hernandulcin synthesis.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Structure of L-Rhamnose Isomerase in Complex with L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Open Bio 3 (2013) 35–40 journal homepage: www.elsevier.com/locate/febsopenbio Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site Hiromi Yoshidaa, Akihide Yoshiharab, Misa Teraokaa, Satoshi Yamashitaa, Ken Izumorib, Shigehiro Kamitoria,* aLife Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan bRare Sugar Research Center and Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan article info abstract Article history: L-Rhamnose isomerase (L-RhI) catalyzes the reversible isomerization of L-rhamnose to L-rhamnulose. Received 27 November 2012 Previously determined X-ray structures of L-RhI showed a hydride-shift mechanism for the isomeriza- Accepted 30 November 2012 tion of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant L-RhI in complex with L- Keywords: rhamnopyranose and D-allopyranose. Results suggest that a catalytic water molecule, which acts as an l-Rhamnose isomerase acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and Pseudomonas stutzeri Sugar-ring opening mechanism that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different Rare sugar anomers of substrates. X-ray structure C 2012 The Authors.
    [Show full text]
  • Genomic Analysis of Thermophilicbacillus Coagulans
    OPEN Genomic analysis of thermophilic Bacillus SUBJECT AREAS: coagulans strains: efficient producers for COMPARATIVE GENOMICS platform bio-chemicals BACTERIAL GENOMICS Fei Su & Ping Xu Received 17 September 2013 State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. Accepted 14 January 2014 Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed Published for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic 29 January 2014 information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino Correspondence and acid metabolism may have played a significant role in the thermal adaptation. We also researched the requests for materials immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile should be addressed to genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of P.X. ([email protected]. B. coagulans and paves the way for improving and extending the uses of this species. cn) hite biotechnology, the clean industrial technology supported by several predominant political move- ments, will comprise no less than 20% of the chemical industry sales in the United States in 20201.To attempt to meet the dramatic future demands for these materials, researchers have used microbial W 2 strains to produce platform bio-chemicals .
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/207087 Al 31 December 2014 (31.12.2014) P O P C T (51) International Patent Classification: Seville (ES). GUTIERREZ GOMEZ, Pablo; Campus C12N 9/00 (2006.01) C12N 9/90 (2006.01) Palmas Altas, Calle Energia Solar 1, E-41014 Seville (ES). C12N 9/02 (2006.01) C12P 5/02 (2006.01) (74) Agent: NEDERLANDSCH OCTROOIBUREAU; J.W. C12N 9/10 (2006.01) C12P 7/76 (2006.01) Frisolaan 13, NL-2517 JS The Hague (NL). C12N 9/12 (2006.01) C12P 7/64 (2006.01) C12N 9/88 (2006.01) C12N 1/1 9 (2006.01) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/EP2014/063484 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 26 June 2014 (26.06.2014) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (25) Filing Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (30) Priority Data: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 13382241 .1 26 June 2013 (26.06.2013) EP ZW.
    [Show full text]
  • Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum Sp
    J. Microbiol. Biotechnol. (2018), 28(7), 1122–1132 https://doi.org/10.4014/jmb.1802.02021 Research Article Review jmb Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing L-Rhamnulose from L-Rhamnose Min Shen1†, Xin Ju1†, Xinqi Xu2, Xuemei Yao1, Liangzhi Li1*, Jiajia Chen1, Cuiying Hu1, Jiaolong Fu1, and Lishi Yan1 1School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China 2Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, P.R. China Received: February 14, 2018 Revised: April 12, 2018 In this study, we attempted to find new and efficient microbial enzymes for producing rare Accepted: April 13, 2018 sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and First published online preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could May 8, 2018 catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed *Corresponding author that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of L-rhamnose to Phone: +86-512-68056493; L-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions (50oC, Fax: +86-512-68418431; 2+ E-mail: [email protected] pH 8.0, and 1 mM Ca ) were obtained to maximize the potential of OsRpiB in preparing L-rhamnulose. The catalytic properties of OsRpiB, including Km, kcat, and catalytic efficiency † These authors contributed (k /K ), were determined as 43.47 mM, 129.4 sec-1, and 2.98 mM/sec. The highest conversion equally to this work.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,562,241 B2 Burk Et Al
    USOO9562241 B2 (12) United States Patent (10) Patent No.: US 9,562,241 B2 Burk et al. (45) Date of Patent: Feb. 7, 2017 (54) SEMI-SYNTHETIC TEREPHTHALIC ACID 5,487.987 A * 1/1996 Frost .................... C12N 9,0069 VLAMCROORGANISMIS THAT PRODUCE 5,504.004 A 4/1996 Guettler et all 435,142 MUCONCACID 5,521,075- W I A 5/1996 Guettler et al.a (71) Applicant: GENOMATICA, INC., San Diego, CA 3. A '95 seal. (US) 5,686,276 A 11/1997 Lafend et al. 5,700.934 A 12/1997 Wolters et al. (72) Inventors: Mark J. Burk, San Diego, CA (US); (Continued) Robin E. Osterhout, San Diego, CA (US); Jun Sun, San Diego, CA (US) FOREIGN PATENT DOCUMENTS (73) Assignee: Genomatica, Inc., San Diego, CA (US) CN 1 358 841 T 2002 EP O 494 O78 7, 1992 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/308,292 Abadjieva et al., “The Yeast ARG7 Gene Product is Autoproteolyzed to Two Subunit Peptides, Yielding Active (22) Filed: Jun. 18, 2014 Ornithine Acetyltransferase,” J. Biol. Chem. 275(15): 11361-11367 2000). (65) Prior Publication Data . al., “Discovery of amide (peptide) bond synthetic activity in US 2014/0302573 A1 Oct. 9, 2014 Acyl-CoA synthetase,” J. Biol. Chem. 28.3(17): 11312-11321 (2008). Aberhart and Hsu, "Stereospecific hydrogen loss in the conversion Related U.S. Application Data of H, isobutyrate to f—hydroxyisobutyrate in Pseudomonas (63) Continuation of application No.
    [Show full text]
  • Heat Priming Induces Trans-Generational Tolerance to High Temperature Stress in Wheat
    fpls-07-00501 April 12, 2016 Time: 15:59 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 14 April 2016 doi: 10.3389/fpls.2016.00501 Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat Xiao Wang1, Caiyun Xin1,2, Jian Cai1, Qin Zhou1*, Tingbo Dai1, Weixing Cao1 and Dong Jiang1* 1 National Technology Innovation Center for Regional Wheat Production/National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China, 2 Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These Edited by: genes were related to signal transduction, transcription, energy, defense, and protein Shabir Hussain Wani, destination and storage, respectively. The gene encoding the lysine-specific histone Sher-e-Kashmir University demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic of Agricultural Sciences and Technology, India modification was up-regulated in the PH compared with NH.
    [Show full text]
  • B Number Gene Name Strand Orientation Protein Length Mrna
    list list sample) short list predicted B number Operon ID Gene name assignment Protein length mRNA present mRNA intensity Gene description Protein detected - Strand orientation Membrane protein detected (total list) detected (long list) membrane sample Proteins detected - detected (short list) # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides Functional category detected (membrane Protein detected - total Protein detected - long b0001 thrL + 21 1344 P 1 0 0 0 0 thr operon leader peptide Metabolism of small molecules 1 b0002 thrA + 820 13624 P 39 P 18 P 18 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules 1 b0003 thrB + 310 6781 P 9 P 3 3 P 3 0 homoserine kinase Metabolism of small molecules 1 b0004 thrC + 428 15039 P 18 P 10 P 11 P 10 0 threonine synthase Metabolism of small molecules 1 b0005 b0005 + 98 432 A 5 0 0 0 0 orf, hypothetical protein Open reading frames 2 b0006 yaaA - 258 1047 P 11 P 1 2 P 1 0 orf, hypothetical protein Open reading frames 3 b0007 yaaJ - 476 342 P 8 0 0 0 0 MP-GenProt-PHD inner membrane transport protein Miscellaneous 4 b0008 talB + 317 20561 P 20 P 13 P 16 P 13 0 transaldolase B Metabolism of small molecules 5 b0009 mog + 195 1296 P 7 0 0 0 0 required for the efficient incorporation of molybdate into molybdoproteins Metabolism of small molecules 6 b0010 yaaH - 188 407 A 2 0 0 0 0 PHD orf, hypothetical protein Open reading frames 7 b0011 b0011 - 237 338 P 13 0 0 0 0 putative oxidoreductase Miscellaneous 8 b0012 htgA
    [Show full text]