Metabolic Engineering for Fumaric and Malic Acids Production

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Engineering for Fumaric and Malic Acids Production Metabolic Engineering for Fumaric and Malic Acids Production Dissertation Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Baohua Zhang, M.S. Ohio State Biochemistry Program The Ohio State University 2012 Dissertation Committee: Professor Shang-Tian Yang, Advisor Professor Jeffrey Chalmers Professor Hua Wang Copyright by Baohua Zhang 2012 ABSTRACT Fumaric acid is a natural organic acid widely found in nature. With a chemical structure of two acid carbonyl groups and a trans-double bond, fumaric acid has extensive applications in the polymer industry, such as in the manufacture of polyesters, resins, plasticizers and miscellaneous applications including lubricating oils, inks, lacquers, styrenebutadiene rubber, etc. It is also used as acidulant in foods and beverages because of its nontoxic feature. Currently, fumaric acid is mainly produced via petrochemical processes with benzene or n-butane as the feedstock. However, with the increasing crude oil prices and concerns about the pollution problems caused by chemical synthesis, a sustainable, bio-based manufacturing process for fumaric acid production has attracted more interests in recent years. Rhizopus oryzae is a filamentous fungus that has been extensively studied for fumaric acid production. It produces fumaric acid from various carbon sources under aerobic conditions. Malic acid and ethanol are produced as byproducts, and the latter is accumulated mainly when oxygen is limited. Like most organic acid fermentations, the production of fumaric acid is limited by low productivity, yield and final concentration influenced by many factors including the microbial strain used and its morphology, medium composition, and neutralizing agents. Many efforts have been done to improve fumaric acid production through optimization of the fermentation process. The goal of ii this project was to use metabolic engineering to modify the fumaric acid biosynthesis pathway to increase fumaric acid production in R. oryzae. This is the first attempt to apply genetic engineering strategies to change the metabolic flux towards fumaric acid biosynthesis. The biosynthesis of fumaric acid in R. oryzae takes place in the cytosol and three enzymes: pyruvate carboxylase (PYC), malate dehydrogenase and fumarase are involved in the reaction. PYC is situated at the branch point of pyruvate metabolism, and its role in affecting fumaric acid and various metabolites accumulation was thus studied in this work. An expression plasmid containing native R. oryzae pyc gene, encoding pyruvate carboxylase, was transformed into the uracil auxotroph R. oryzae M16. Two transformants were obtained: pyc3 and pyc5, and were verified by Southern hybridization. Compared to the wild type, the PYC activity in the pyc tranformants increased 56%-83%. However, the pyc transformants grew poorly and had a low fumaric acid yield of less than 0.05 g/g glucose due to the formation of large cell pellets that limited oxygen supply and resulted in the accumulation of ethanol with a high yield of 0.13-0.36 g/g glucose. An exogenous phosphoenolpyruvate carboxylase (PEPC) was introduced in R. oryzae with the aim to increase CO2 fixation and the carbon flux toward Oxaloacetate. The pepc gene encoding PEPC was expressed in R. oryzae under the endogenous pgk1 promoter and pdcA terminator. The obtained pepc transformants exhibited significant PEPC activity of 3-6 mU/mg that was absent in the wild type. Compared to the fermentation kinetics of the wild type, the fumaric acid production by the pepc transformant increased 26% (0.78 g/g glucose vs. 0.62 g/g for the wild type). iii Fumarase catalyzing the final step of fumaric acid biosynthesis in R. oryzae was overexpressed to investigate its effects on cell growth and fumaric acid production. Three fumR fragments with different lengths of 5’ and 3’ untranslated regions (UTR) were used to express the fumR gene in R. oryzae. All transformants showed significantly increased fumarase activity during both the seed culture and fermentation stages. However, fumarase overpression yielded more malic acid, instead of fumaric acid in the fermentation. It was attributed to the catalytic prevalence on the direction of fumaric acid to malic acid by the overexpressed fumarase. The results suggested that the overepxressed fumarase by itself was not responsible for the overproduction of fumaric acid in R. oryzae. Fumaric acid is an intermediate in the succinic acid biosynthesis pathway in E. coli fermentation under anaerobic conditions. The fumarate reductase, encoded by frd, was disrupted in E. coli KJ060, a high succinic acid producer, to study its effect on the metabolic flux distribution. The frd gene was removed from E. coli chromosome through homologous recombination. Under anaerobic conditions, the frd disrupted mutant of E. coli KJ060M produced little succinic acid. However, it did not produce much fumaric acid either. Under aerobic conditions, the mutant produced malic acid as the main product, with a high yield of 0.72 g/g glucose, higher than that (0.65 g/g) produced by the parental strain. A high malic acid concentration of 48.4 g/L was produced in fed-batch fermentation in a 5-liter fermenter with a productivity of 2.38 g/L·h. The mutant thus has the potential for use in industrial production of malic acid, which is widely used as acidulants in foods and beverages. iv Dedicated to my parents and husband v ACKNOWLEDGEMENTS Firstly, I would like to express my special thanks and gratitude to my advisor, Dr. Shang-Tian Yang, who gave me guidance, encouragement and support throughout my graduate study. I learned a lot from his expertise in science and deep insights in my research. I would also like to thank Dr. Jeffrey Chalmers and Dr. Hua Wang for their time being on my committee and their valuable advices on my research project. I want to give my sincere thanks to all the previous and current laboratory members in our research group, especially Dr. Mingrui Yu, Mr. Kun Zhang, and Mr. Zhongqiang Wang for their helpful suggestions and support. In addition, I would like to specially thank Dr. Christopher D. Skory from USDA for providing experimental strains, plasmids as well as valuable technical advice and assistance. I would also like to thank Dr. Lonnie O. Ingram from University of Florida for providing E. coli strains. Financial supports from the United Soybean Board and the Consortium for Plant Biotechnology Research, Inc. (CPBR) to this research are also acknowledged. Finally, I wish to thank my parents for all their emotional support and my husband for helping me get through the difficult times. My entire family and all my friends are acknowledged in the depth of my heart. vi VITA 1999 - 2003…………………………………...B.S. Biological Science, Nankai University 2003 - 2006…………………………………..........M.S. Microbiology, Nankai University 2006 - 2007……………………..Graduate Fellowship, Ohio State Biochemistry Program The Ohio State University 2007 – 2012………………………………………………….Graduate Research Associate, Chemical & Biomolecular Engineering The Ohio State University PUBLICATIONS 1. Zhang, B., Skory, C.D., Yang, S.T. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metabolic Engineering. 2012. In Press. 2. Zhang, B., Yang, S.T. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry. 2012. Accepted for publication. 3. Yang, S.T., Zhang, K., Zhang, B., Huang, H. Biobased Chemicals - Fumaric Acid. In: Moo-Young M (ed.) Comprehensive Biotechnology, 2nd edition. 2011. pp.163-177. 4. Wang, Z., Feng, S., Huang, Y., Qiao, M., Zhang, B., Xu, H. Prokaryotic expression, purification, and polyclonal antibody production of a hydrophobin from Grifola frondosa. Acta Biochim Biophys Sin (Shanghai). 2010, 42:388-95. 5. Yu, L., Zhang, B., Szilvay, G.R., Sun, R., Jänis, J., Wang, Z., Feng, S, Xu, H., Linder, M.B., Qiao, M. Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology. 2008, 154:1677-1685. 6. Yu, L., Shao, B., Zhang, B. Isolation and purification of Trichoderma reesei hydrophobin HFBI. Food and Fermentation Industries. 2005, 31:129-132. FIELDS OF STUDY Major Field: Biochemistry Specialty: Biochemical Engineering vii Table of Contents Abstract ............................................................................................................................... ii Dedication………………………………………………………………………………....v Acknowledgements ............................................................................................................ vi Vita .................................................................................................................................... vii List of Figures ................................................................................................................... xv List of Tables ................................................................................................................. xviii 1. Introduction ..................................................................................................................... 1 1.1 Objectives .................................................................................................................. 3 1.2 Scope of study ..........................................................................................................
Recommended publications
  • WINE CHEM 101 Part B by Bob Peak
    WINE CHEM 101 Part B By Bob Peak In last year’s catalog and newsletter, we began a discussion of the chemistry of wine and winemaking— Wine Chem 101, Part A—with details about conversion of sugars to alcohol. (That article is still available at thebeveragepeople. com). At the end of the article, I credited wine acids for the “zing” in wine flavor that lifts it above ordinary bever-ages. So, in this issue, I will tackle that part of Wine Chem: Acid. The two major organic acid components of grapes and grape juice are tartaric and malic acids, usually starting at about a 50-50 ratio. Together, they create the low pH conditions that help make wine a stable beverage and provide the pleasant tartness we all associate with it. The combined range of these acids in fresh grape juice will usually fall between 3 and 15 grams per liter (or 0.3 to 1.5%). Although this wide range of acid levels—measured as TA or Titratable Acidity—can be seen around the world, most North Coast grape juice comes in between 0.4 and 0.7% TA, with about 0.65% preferred. There is also a trace of citric acid in grapes, but it is not a significant contributor to TA. Together, these acids are the “fixed” acids of grape juice, joined in some wines by lactic acid from malolactic fermentation. The term “fixed” is used to distinguish from the spoilage acids of wine, the volatile acids. Those acids—mostly acetic acid—are the products of vinegar fermenta-tion and will introduce unpleasant aromas to wine at very low levels.
    [Show full text]
  • Succinic Acid
    ENVIRONMENTAL FACTSHEET: SUCCINIC ACID PRODUCT INFORMATION Succinic acid (COOH(CH2)2COOH) is a carboxylic acid used in food (as an acidulant), pharmaceutical (as an excipient), personal care (soaps) and chemical (pesticides, dyes and lacquers) industries. Bio-based succinic acid is seen as an important platform chemical for the production of biodegradable plastics and as a substitute of several chemicals (such as adipic acid) [1]. Lignocellulosic Crops and Starch Crops Sugar Crops Today succinic acid is mainly produced Type of Type Biomass Residues from fossil resources through maleic acid hydrogenation. It can also be produced through fermentation of sugars. In that Cultivation and Harvesting case, in addition to succinic acid, other Biomass carboxylic acids (such as lactic acid, formic Production acid, propionic acid) and alcohols (such as ethanol) are also obtained. The production Starch Sugar Pretreatment Extraction & Extraction & ratios of these by-product compounds Separation Separation depend on the microorganism strain used and on the operation conditions. Several Hemicellulose Food Food Feed companies and industrial consortiums Lignin Cellulose Starch Feed Saccharose started bio-based production of succinic acid at demonstration scale (up to 70 ktonnes/year of full capacity, per Hydrolysis production plant [2]). Two strategies are being used for succinic acid fermentation [1]: (1) Use of bacteria strains, isolated Glucose from rumen. This strains are excellent Biomass Conversion Biomass natural succinic acid producers and their yields can be improved, though metabolic engineering; (2) Use of well-known Fermentation industrial microorganisms (such as Escherichia coli or Saccharomyces cervisiae) and modify their minor succinic acid production capability into high yields Succinic Acid through metabolic engineering.
    [Show full text]
  • The Clinical Significance of the Organic Acids Test
    The Clinical Significance of the Organic Acids Test The Organic Acids Test (OAT) provides an accurate metabolic snapshot of what is going on in the body. Besides offering the most complete and accurate evaluation of intestinal yeast and bacteria, it also provides information on important neurotransmitters, nutritional markers, glutathione status, oxalate metabolism, and much more. The test includes 76 urinary metabolite markers that can be very useful for discovering underlying causes of chronic illness. Patients and physicians report that treating yeast and bacterial abnormalities reduces fatigue, increases alertness and energy, improves sleep, normalizes bowel function, and reduces hyperactivity and abdominal pain. The OAT Assists in Evaluating: ■ Krebs Cycle Abnormalities ■ Neurotransmitter Levels ■ Nutritional Deficiencies ■ Antioxidant Deficiencies ■ Yeast and Clostridia Overgrowth ■ Fatty Acid Metabolism ■ Oxalate Levels ■ And More! The OAT Pairs Well with the Following Tests: ■ GPL-TOX: Toxic Non-Metal Chemical Profile ■ IgG Food Allergy + Candida ■ MycoTOX Profile ■ Phospholipase A2 Activity Test Learn how to better integrate the OAT into your practice, along with our other top tests by attending one of our GPL Academy Practitioner Workshops! Visit www.GPLWorkshops.com for workshop dates and locations. The following pages list the 76 metabolite markers of the Organic Acids Test. Included is the name of the metabolic marker, its clinical significance, and usual initial treatment. INTESTINAL MICROBIAL OVERGROWTH Yeast and Fungal Markers Elevated citramalic acid is produced mainly by Saccharomyces species or Propionibacteria Citramalic Acid overgrowth. High-potency, multi-strain probiotics may help rebalance GI flora. A metabolite produced by Aspergillus and possibly other fungal species in the GI tract. 5-Hydroxy-methyl- Prescription or natural antifungals, along with high-potency, multi-strain probiotics, furoic Acid may reduce overgrowth levels.
    [Show full text]
  • Notices Federal Register Vol
    28416 Notices Federal Register Vol. 62, No. 100 Friday, May 23, 1997 This section of the FEDERAL REGISTER 1255 22nd Street, NW, Room 311, West interests of consumers. Through contains documents other than rules or End Court Building, Washington, DC adoption of food standards, codes of proposed rules that are applicable to the 20250±3700; (202) 418±8852. For practice, and other guidelines public. Notices of hearings and investigations, information pertaining to particular developed by its committees and by committee meetings, agency decisions and committees, the delegate of that promoting their adoption and rulings, delegations of authority, filing of petitions and applications and agency committee may be contacted. (A implementation by governments, Codex statements of organization and functions are complete list of U.S. delegates and seeks to ensure that the world's food examples of documents appearing in this alternate delegates can be found in supply is sound, wholesome, free from section. Appendix 1 to this notice.) adulteration, and correctly labeled. In SUPPLEMENTARY INFORMATION: the United States, the United States Department of Agriculture (USDA); the DEPARTMENT OF AGRICULTURE Background Food and Drug Administration (FDA), The World Trade Organization (WTO) Department of Health and Human Food Safety and Inspection Service was established on January 1, 1995, as Services (HHS), and the Environmental [Docket No. 97±026N] the common international institutional Protection Agency (EPA) manage and framework for the conduct of trade carry out U.S. Codex activities. International Standard-Setting relations among its members in matters As the agency responsible for Activities related to the Uruguay Round informing the public of the sanitary and Agreements.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Acetaldehyde Stimulation of Net Gluconeogenic Carbon Movement from Applied Malic Acid in Tomato Fruit Pericarp Tissue'12
    Plant Physiol. (1991) 95, 954-960 Received for publication July 18, 1990 0032-0889/91 /95/0954/07/$01 .00/0 Accepted November 16, 1990 Acetaldehyde Stimulation of Net Gluconeogenic Carbon Movement from Applied Malic Acid in Tomato Fruit Pericarp Tissue'12 Anna Halinska3 and Chaim Frenkel* Department of Horticulture, Rutgers-The State University, New Brunswick, New Jersey 08903 ABSTRACT appears to stimulate a respiratory upsurge in climacteric and Applied acetaldehyde is known to lead to sugar accumulation nonclimacteric fruit including blueberry and strawberry (13) in fruit including tomatoes (Lycopersicon esculentum) (O Paz, HW as well as in potato tubers (24) and an enhanced metabolite Janes, BA Prevost, C Frenkel [1982] J Food Sci 47: 270-274) turnover in ripening fig (9). The action of AA may be inde- presumably due to stimulation of gluconeogenesis. This conjec- pendent of ethylene, because AA was shown on one hand to ture was examined using tomato fruit pencarp discs as a test inhibit ethylene biosynthesis (E Pesis, personal communica- system and applied -[U-14C]malic acid as the source for gluco- tion) and on the other to promote softening and degreening neogenic carbon mobilization. The label from malate was re- in pear even when ethylene biosynthesis and action were covered in respiratory C02, in other organic acids, in ethanol arrested ( 14). insoluble material, and an appreciable amount in the ethanol The finding that AA application is accompanied by an soluble sugar fraction. In Rutgers tomatoes, the label recovery in increase in the total sugars content in tomato (19, 21) raises the sugar fraction and an attendant label reduction in the organic acids fraction intensified with fruit ripening.
    [Show full text]
  • Seeding the Pregenetic Earth: Meteoritic Abundances Of
    Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 5/2/11 SEEDING THE PREGENETIC EARTH: METEORITIC ABUNDANCES OF NUCLEOBASES AND POTENTIAL REACTION PATHWAYS Ben K. D. Pearce1,4 and Ralph E. Pudritz2,3,5 Accepted for publication in ApJ ABSTRACT Carbonaceous chondrites are a class of meteorite known for having a high content of water and organics. In this study, abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine and uracil are found in carbonaceous chondrites in the amounts of 1–500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorites dominate the abundances of both amino acids and nucleobases—the so-called CM2 (e.g. Murchison meteorite). CR2 meteorites (e.g. Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 ppb and 16 ± 13 ppb respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1–2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer-Tropsch synthesis (i.e.
    [Show full text]
  • Method for Producting L-Aspartic Acid
    Europiisches Patentamt (19) J European Patent Office © Publication number: 0 129 119 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 84106218.5 ©Int CI.3: C 12 N 15/00 C 12 P 13/20, C 12 N 1/20 @ Date of filing: 30.05.84 C 12 N 9/88 //(C12N1/20,C12R1/19), (C12P13/20,C12R1/19) © Priority: 15.06.83 JP 107573/83 © Applicant: Tanabe Seiyaku Co., Ltd. No. 21 Dosho-machi 3-chome Higashi-ku Osaka-shi Osaka-fu(JP) © Date of publication of application: 27.12.84 Bulletin 84/52 © Inventor: KisumLMasahiko No. 12-20, Morikitacho4-chome Higashinada-ku © Designated Contracting States: Kobe-shi Hyogo-ken(JP) CH DE FR GB U SE © Inventor: Komatsubara,Saburo No. 385-10, Kamigasacho Kusatsu-shi Shiga-ken(JP) © Inventor: Taniguchi, Tomoyasu No. 12-22, Kawaharacho Izumiotsu-shi Osaka-fu(JP) © Representative: Kraus, Walter, Dr. et al, Patentanwalte Kraus, Weisert & Partner Irmgardstrasse 15 D-8000 Munchen 71 (DE) © Method for producing L-aspartic acid. A novel microorganism of the genus Escherichia contain- ing a hybrid plasmid prepared by integrating a plasmid with a deoxyribonucleic acid carrying the gene for aspartase which is obtained from a microorganism of the genus Escherichia. An industrially advantageous method for producing L-aspartic acid comprising contacting a culture of the novel microorganism, microbial cells collected from the culture or a processed material of the microbial cells with fumaric acid and ammonia to produce L-aspartic acid and then collecting L-aspartic acid thus produced is also disclosed. < 0> FIELD OF THE INVENTION The present invention relates to a novel micro- organism of the genus Escherichia having high aspartase activity and a method for producing L-aspartic acid using the microorganism.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • Maleic Anhydride
    Product Stewardship Summary Maleic anhydride General Statement Maleic anhydride (MAN) is an organic chemical intermediate for the manufacture of numerous products including unsaturated polyester resins (UPR), MAN-based copolymers, lube oil additives, alkyl succinic anhydrides (ASA), malic acid, fumaric acid and various agricultural chemicals. UPR’s are used in boats, automobiles, buildings, piping, and electrical goods. MAN-based copolymers consist of a wide variety of copolymers with diverse applications including compatibilizers and coupling agents with polyolefins and as thickeners, dispersants and stabilizing agents in consumer products such as cosmetics and toiletries. Lube oil additives synthesized from maleic anhydride are used to prolong oil change intervals and improve engine efficiency. ASA’s are used in a variety of applications including paper sizing, detergents, leather treatment and food products. Malic acid is primarily used as an additive to food and beverages to control pH and enhance flavors. Fumaric acid uses include paper sizing, food acidulant and UPR manufacture. Agricultural chemicals from maleic anhydride include pesticides, herbicides and growth regulators. Maleic anhydride rapidly forms maleic acid when in contact with water. This acid is an irritant and skin sensitizer. Consumer exposure to maleic anhydride is uncommon, and worker exposure is controlled by protective equipment and ventilation. Chemical Identity Name: Maleic Anhydride Brand Names: Sold as such, and incorporated into unsaturated polyester resins and food additive products Chemical name (IUPAC): furan-2,5-dione CAS number(s): 108-31-6 EC number: 203-571-6 Molecular formula: C4H2O3 Structure: Uses and Applications Ashland produces maleic anhydride in the USA. Ashland uses maleic anhydride to produce unsaturated polyester resins and food additive products.
    [Show full text]
  • 3.2 N-Butane to Maleic Anhydride
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN Chimica Ciclo XXVII Settore Concorsuale di afferenza: 03/C2 Settore Scientifico disciplinare: CHIM/04 THE SYNTHESIS OF MALEIC ANHYDRIDE: STUDY OF A NEW PROCESS AND IMPROVEMENT OF THE INDUSTRIAL CATALYST Presentata da: Giulia Pavarelli Coordinatore Dottorato Relatore Prof. Aldo Roda prof. Fabrizio Cavani Esame finale anno 2015 Summary Summary 1 Aim of work ..............................................................................5 2 Introduction ...............................................................................7 2.1 Maleic anhydride .............................................................................. 7 2.2 Maleic anhydride production .......................................................... 10 2.3 Commercial Maleic Anhydride Technologies ............................... 13 2.3.1 Fixed bed .................................................................................. 14 2.3.2 Fluidized bed ............................................................................ 15 2.3.3 Transported bed ........................................................................ 16 2.4 Vanadyl pyrophosphate catalyst ..................................................... 17 2.4.1 Synthesis of the precursor VOHPO4·0.5H2O........................... 18 2.4.2 Thermal treatment of the precursor VOHPO4·0.5H2O: mechanism of transformation of VHP to VPP ..................................... 20 2.4.3 Activation of (VO)2P2O7 catalyst ............................................
    [Show full text]