University of Florida Thesis Or Dissertation Formatting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds. -
Nucleic Acid Metabolism in Regenerating Rat Liver I. the Rate of Deoxyribonucleic Acid Synthesis in Vivo1
Nucleic Acid Metabolism in Regenerating Rat Liver I. The Rate of Deoxyribonucleic Acid Synthesis in Vivo1 LISELOTTEI.HECHTANDVANR. POTTER (McArdie Memorial Laboratory, University of Wisconsin, Madison 6, Wis.) An ideal system for examining the relationship MATERIALS AND METHODS between ribonucleic acid (UNA) and deoxyribo- Partial hepatectomy was performed by the method of nucleic acid (DNA) metabolism in animals would Higgins and Anderson (18) on male albino rats1 weighing 180 be a tissue where synchronous cell division occurs. to 185 gm. The animals were fasted for 16-18 hours before the Isotopie tracer studies (9, 22, 25) and determina operation and fed ad libitum after the operation. At the indi cated times each animal received a single intraperitoneal in tion of the DNA content per nucleus in the liver jection of 1 mg. (5.75 pinoles) of orotic acid-6-C14which con cells of partially hepatectomized rats (25, 26, 83) tained 4.1 X 10* counts/min/mg. Following the injection, have suggested that in animals the most feasible some animals were kept in metabolism cages to facilitate col approach to this situation is by the use of re lection of urine and respiratory CO2. The animals were killed by decapitation. The liver was perfused in situ with ice-cold generating liver. The observations that incorpora 0.25 H sucrose containing 0.00018 M CaCl2, excised, and tion of isotopically labeled precursors into DNA weighed. is correlated with the occurrence of cell division Preparation of cellfractions.'—Theliver was forced through (5,17,30) and that isotopes are retained extensive a plastic mincer, and a 10 per cent homogenate of the liver was ly in the DNA of mitotically inactive and active prepared in 0.25 Msucrose + 0.00018 u CaCl2 (19) with the use cells (2, 4, 6,10-12,16, 31, 32) indicate that DNA of a Potter-Elvehjem glass homogenizer. -
Purine and Pyrimidine Metabolism in Human Epidermis* Jean De Bersaques, Md
THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 4s, No. Z Copyright 1957 by The Williams & Wilkins Co. Fri nte,1 in U.S.A. PURINE AND PYRIMIDINE METABOLISM IN HUMAN EPIDERMIS* JEAN DE BERSAQUES, MD. The continuous cellular renewal occurring inthine, which contained 5% impurity, and for uric the epidermis requires a very active synthesisacid, which consisted of 3 main components. The reaction was stopped after 1—2 hours in- and breakdown of nuclear and cytoplasmiecubation at 37° and the products were spotted on nucleic acids. Data on the enzyme systemsWhatman 1 filter paper sheets. According to the participating in these metabolic processes arereaction products expected, a choice was made of rather fragmentary (1—9) and some are, inat least 2 among the following solvents, all used terms of biochemical time, in need of up- in ascending direction: 1. isoamyl alcohol—5% Na2HPO4 (1:1), dating. In some other publications (10—18), 2. water-saturated n-butanol, the presence and concentration of various in- 3. distilled water, termediate products is given. 4. 80% formic acid—n-hutanol——n-propanol— In this paper, we tried to collect and supple- acetone—30% trichloro-aeetic acid (5:8:4: ment these data by investigating the presence 5:3), 5. n-butanol——4% boric acid (43:7), or absence in epidermis of enzyme systems 6. isobutyrie acid—water—ammonia 0.880—ver- that have been described in other tissues. sene 0.1M(500:279:21:8), This first investigation was a qualitative one, 7. upper phase of ethyl acetate—water—formic and some limitations were set by practical acid (12:7:1), 8. -
Nitrogen-Stimulated Orotic Acid Synthesis and Nucleotide Imbalance1
[CANCER RESEARCH (SUPPL.) 52. 2082s-2084s. April I. 1992] Nitrogen-stimulated Orotic Acid Synthesis and Nucleotide Imbalance1 Willard J. Visek2 University of Illinois, College of Medicine, Urbana, Illinois 61801 Abstract bound to the inner mitochondria! membrane. The cytoplasmic enzymes reside in two separate multifunctional complexes. One Orotic acid, first discovered in ruminant milk, is an intermediate in contains carbamoyl phosphate synthetase II, aspartate trans- the pyrimidine biosynthesis pathway of animal cells. Its synthesis is carbamylase, and dihydroorotase, whereas the other includes initiated by the formation of carbamoyl phosphate (CP) in the cytoplasm, orotate phosphoribosyl transferase and orotodine-5"-phosphate with ammonia derived from glutamine. Ureotelic species also form CP in the first step of urea synthesis in liver mitochondria. For that, ammonia decarboxylase (2, 3). A deficiency of the latter two enzyme is derived from tissue fluid. When there is insufficient capacity for activities results in accumulation of orotate and a profound rise detoxifying the load of ammonia presented for urea synthesis, CP leaves in its excretion in the urine, a condition known as hereditary the mitochondria and enters the pyrimidine pathway, where orotic acid orotic aciduria (4). This bifunctional protein complex with its biosynthesis is stimulated, orotic acid excretion in urine then increases. two enzyme activities is also referred to as UMP synthase. Orotic acid synthesis is abnormally high with hereditary deficiencies of A severe deficiency of UMP synthase elevates urinary orotic urea-cycle enzymes or uridine monophosphate synthase. It is also ele acid excretion in humans to 1500 mg/day, compared with the vated by ammonia intoxication and during feeding of diets high in protein, usual 2.5 mg/day. -
Purine and Pyrimidine Metabolism by N. ZOLLNER, Department Of
Proc. Nuti. Soc. (1982), 41,329 329 Purine and pyrimidine metabolism By N. ZOLLNER,Department of Medicine, University of Munchen, West Germany Purines and pyrimidines are essential constituents of animal and plant cells and are contained in various compounds. It is interesting to consider that some of these compounds are very stable, e.g. DNA, while others are rapidly turned over, e.g. ATP. In birds and reptiles uric acid also serves to excrete nitrogen. The aim of this paper is to give a short review of purine and pyrimidine metabolism and to describe in some detail aspects important to the field of nutrition, with emphasis placed on work done in vitro and in man. Purines The most important structure in purine biochemistry is the nucleotide consisting of a purine base, ribose or deoxyribose, and phosphoric acid. The most important purine bases are adenine, guanine, hypoxanthine and xanthine. The ribosides of all of them are known to occur in metabolism. Adenine and guanine themselves are usually not found in the tissues of mammals, but free hypoxanthine and xanthine are intermediates in the degradation of purines. Uric acid is a divalent acid, but the second dissociation constant is so small that at around pH 7 only the monobasic salts are formed. These are sparingly soluble in the body fluids. Peters & van Slyke (1946) have calculated a maximum solubility of 6.5 mg/Ioo ml (as uric acid) in plasma. Gout and uric acid nephropathies are due to this low solubility. Nucleosides are pentose-glycosides containing ribose or deoxyribose. Normally the linkage is with atom 9, but nucleosides with atom 3 do occur. -
Hereditary Orotic Aciduria: Evidence for a Structural Gene Mutation (6-Azauridine/Biochemical Genetics)
Proc. Nat. Acad. Sci. USA Vol. 71, No. 8, pp. 3031-3035, August 1974 Hereditary Orotic Aciduria: Evidence for a Structural Gene Mutation (6-azauridine/biochemical genetics) THOMAS E. WORTHY, WOLFGANG GROBNER, AND WILLIAM N. KELLEY* Division of Rheumatic and Genetic Diseases, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710 Communicated by J. Edwin Seegmiller, May 6, 1974 ABSTRACT Orotic aciduria is a rare autosomal re- in man (5). This proposal was based on several observations. cessive disease in man due to a deficiency of orotate phos- (i) The double enzyme defect was difficult to explain as a phoribosyltransferase (EC 2.4.2.10; orotidine-5'-phos- phate: pyrophosphate phosphoribosyltransferase) and oro- structural gene mutation. Alternatively, some mutations in tidine-5'-phosphate decarboxylase (EC 4.1.1.23; orotidine- bacteria that affected the regulation of enzyme expression 5'-phosphate carbo.Ny-lyase). We have compared certain were known to reduce the levels of two or more enzymes in a physicochemical properties of orotidine-5'-phosphate pathway (6). In addition, OPRT and ODC levels were known decarboxylase from normal and mutant fibroblasts grown to under identical conditions. Orotidine-5'-phosphate de- be subject to genetic control in bacteria (7); more recently carboxylase from homozygous mutant cells was more this type of control has been demonstrated in yeast (8). thermolabile and exhibited at different electrophoretic (ii) In erythrocytes from heterozygotes, OPRT and ODC mobility when compared to the enzyme from normal cells; levels were often substantially less than 50% of normal. This orotidine-5'-phosphate decarboxylase from one hetero- was consistent with a trans dominant effect characteristic of zygous cell strain exhibited an intermediate thermplabil- ity while the other heterozygote displayed a thermal in- some regulatory mutations in prokaryotic cells (6). -
Metabolic Engineering for Fumaric and Malic Acids Production
Metabolic Engineering for Fumaric and Malic Acids Production Dissertation Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Baohua Zhang, M.S. Ohio State Biochemistry Program The Ohio State University 2012 Dissertation Committee: Professor Shang-Tian Yang, Advisor Professor Jeffrey Chalmers Professor Hua Wang Copyright by Baohua Zhang 2012 ABSTRACT Fumaric acid is a natural organic acid widely found in nature. With a chemical structure of two acid carbonyl groups and a trans-double bond, fumaric acid has extensive applications in the polymer industry, such as in the manufacture of polyesters, resins, plasticizers and miscellaneous applications including lubricating oils, inks, lacquers, styrenebutadiene rubber, etc. It is also used as acidulant in foods and beverages because of its nontoxic feature. Currently, fumaric acid is mainly produced via petrochemical processes with benzene or n-butane as the feedstock. However, with the increasing crude oil prices and concerns about the pollution problems caused by chemical synthesis, a sustainable, bio-based manufacturing process for fumaric acid production has attracted more interests in recent years. Rhizopus oryzae is a filamentous fungus that has been extensively studied for fumaric acid production. It produces fumaric acid from various carbon sources under aerobic conditions. Malic acid and ethanol are produced as byproducts, and the latter is accumulated mainly when oxygen is limited. Like most organic acid fermentations, the production of fumaric acid is limited by low productivity, yield and final concentration influenced by many factors including the microbial strain used and its morphology, medium composition, and neutralizing agents. -
Next-Generation Metabolic Screening: Targeted and Untargeted Metabolomics for the Diagnosis of Inborn Errors of Metabolism in Individual Patients
Journal of Inherited Metabolic Disease https://doi.org/10.1007/s10545-017-0131-6 METABOLOMICS Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients Karlien L. M. Coene1 & Leo A. J. Kluijtmans1 & Ed van der Heeft1 & UdoF.H.Engelke1 & Siebolt de Boer1 & Brechtje Hoegen1 & Hanneke J. T. Kwast 1 & Maartje van de Vorst2 & Marleen C. D. G. Huigen1 & Irene M. L. W. Keularts3 & Michiel F. Schreuder4 & Clara D. M. van Karnebeek5 & Saskia B. Wortmann6 & Maaike C. de Vries7 & Mirian C. H. Janssen7,8 & Christian Gilissen2 & Jasper Engel9 & Ron A. Wevers1 Received: 15 September 2017 /Revised: 17 December 2017 /Accepted: 21 December 2017 # The Author(s) 2018. This article is an open access publication Abstract The implementation of whole-exome sequencing in clinical diagnostics has generated a need for functional evaluation of genetic variants. In the field of inborn errors of metabolism (IEM), a diverse spectrum of targeted biochemical assays is employed to analyze a limited amount of metabolites. We now present a single-platform, high-resolution liquid chromatography quadrupole time of flight (LC-QTOF) method that can be applied for holistic metabolic profiling in plasma of individual IEM-suspected patients. This method, which we termed Bnext-generation metabolic screening^ (NGMS), can detect >10,000 features in each sample. In the NGMS workflow, features identified in patient and control samples are aligned using the Bvarious forms of chromatography mass spectrometry (XCMS)^ software package. Subsequently, all features are annotated using the Human Metabolome Database, and statistical testing is performed to identify significantly perturbed metabolite concentrations in a patient sample compared with controls. -
Download This Article PDF Format
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Highly selective one-step dehydration, decarboxylation and hydrogenation of citric acid to Cite this: Chem. Sci.,2017,8,2616 methylsuccinic acid† Jasper Verduyckt and Dirk E. De Vos* Received 11th October 2016 The one-step dehydration, decarboxylation and hydrogenation of the bio-based and widely available citric Accepted 15th January 2017 acid is presented. This reaction sequence yields methylsuccinic acid with yields of up to 89%. Optimal DOI: 10.1039/c6sc04541c balances between the reaction rates of the different steps were found by varying the hydrogenation www.rsc.org/chemicalscience catalyst and the reaction parameters (H2 pressure, pH, temperature, time and catalyst-to-substrate ratio). Introduction as well as under a H2-rich atmosphere; citric acid was reacted at 225 C for 6 h in water (Table 1, entries 1–4). These initial Methylsuccinic acid constitutes a very interesting bio-based reaction conditions were inspired by the decarboxylation of L- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. building block for the chemical industry. This bifunctional proline to pyrrolidine, which was recently reported by our 14 carboxylic acid is used for the production of biodegradable group. In addition, NaOH was added in order to reduce polyesters,1–4 binders,5 and cosmetics.6 Currently, it is only unwanted side reactions, such as hydration of the generated 13 available via the hydrogenation of itaconic acid.7–9 Research is double bond. In general, citric acid is very reactive; full still being conducted to optimise this transformation.10 Itaconic conversions are readily obtained in all reactions. -
Studies on the Coordinate Activity and Lability of Orotidylate
Studies on the coordinate activity and lability of orotidylate phosphoribosyltransferase and decarboxylase in human erythrocytes, and the effects of allopurinol administration Richard M. Fox, … , Margaret H. Wood, William J. O'Sullivan J Clin Invest. 1971;50(5):1050-1060. https://doi.org/10.1172/JCI106576. Research Article A coordinate relationship between the activities of two sequential enzymes in the de novo pyrimidine biosynthetic pathway has been demonstrated in human red cells. The two enzymes, orotidylate phosphoribosyltransferase and decarboxylase are responsible for the conversion of orotic acid to uridine-5′-monophosphate. Fractionation of red cells, on the basis of increase of specific gravity with cell age, has revealed that these two enzymes have a marked but equal degree of lability in the ageing red cell. It is postulated that orotidylate phosphoribosyltransferase and decarboxylase form an enzyme- enzyme complex, and that the sequential deficiency of these two enzymes in hereditary orotic aciduria may reflect a structural abnormality in this complex. In patients receiving allopurinol, the activities of both enzymes are coordinately increased, and this increase appears to be due, at least in part, to stabilization of both orotidylate phosphoribosyltransferase and decarboxylase in the ageing red cell. Allopurinol ribonucleotide is an in vitro inhibitor of orotidine-5′-monophosphate decarboxylase and requires the enzyme hypoxanthineguanine phosphoribosyltransferase for its synthesis. However, the administration of allopurinol to patients lacking this enzyme results in orotidinuria and these patients have elevated orotidylate phosphoribosyltransferase and decarboxylase activities in their erythrocytes. Evidence is presented that the chief metabolite of allopurinol, oxipurinol, with a 2,4-diketo pyrimidine ring is capable of acting as an analogue of orotic acid. -
Biosynthesis of Bromegrass Mosaic Virus Ribonucleic Acid by Dean
Biosynthesis of bromegrass mosaic virus ribonucleic acid by Dean Russell Branson A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY Montana State University © Copyright by Dean Russell Branson (1967) Abstract: Both de novo synthesis of nucleotides and rearrangement of ribosomal breakdown products appear to be precursor sources for bromegrass mosaic virus (BMV)-RNA. The incorporation of C^14-orotic acid and C^14-uridine, intermediates of the de novo synthesis and breakdown pathways respectively, were compared in BMV-infected barley during a period of virus synthesis. Analyses of the C^14-BMV-RNA specific activities using the dilution factor method showed that the carbon-14 from C^14-uridine was incorporated into BMV-RNA two to three times more efficiently than the carbon-14 from C^14-orotic acid. The essential enzymes for both pathways were demonstrated by using crude enzyme preparations. Those enzymes considered essential were: 1) uridine 5'kinase, 2) orotidine 5’phosphate pyrophosphorylase, and 3) orotidine 5'phosphate decarboxylase. Ribosomal content was lower in BMV-infected tissue than in non-infected tissue suggesting that BMV incorporated the products of host-RNA breakdown, in a manner similar to that reported for tobacco mosaic virus infections. Continuation of ribosomal synthesis in virus infected tissue was demonstrated by the incorporation of C^14-orotic acid into ribosomal RNA. Pyrimidine metabolism, involved in the formation of RNA precursors in BMV-infected and non-infected barley, appeared unchanged except for the additional function of BMV-RNA synthesis. Evidence for this unchanged metabolism was: 1) radioactive ribosomal RNA from C^14-orotic acid-fed barley, infected and non-infected, contained C^14-uridylic acid 3' and C^14-cytidylic acid 3’ when acid hydrolysed, and 2) ribosome breakdown was not a prerequisite for BMV-RNA precursor formation. -
A UPLC-MS Based Exploration of the Xenobiotic and Endogenous Metabolic Phenotypes of Pre-Clinical Models of Hepatotoxicity
A UPLC-MS Based Exploration of the Xenobiotic and Endogenous Metabolic Phenotypes of Pre-Clinical Models of Hepatotoxicity Isobelle Grant Computational and Systems Medicine Imperial College London Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London Declaration of Originality The author certifies that this thesis, and the experiments it refers to, are their own work and that all else is appropriately referenced or acknowledged. Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. Abstract To reduce late stage attrition during drug development, and improve the diagnosis of drug induced liver injury (DILI), a greater mechanistic understanding of DILI and improved predictive biomarkers are required. In this thesis, the xenobiotic and endogenous metabolic phenotypes of model hepatotoxins are studied in the rat using an ultra-performance liquid chromatography- mass spectrometry (UPLC-MS) based metabonomics approach. The idiosyncratic hepatotoxin Tienilic Acid (TA), was compared to its structural analogue, Tienilic Acid Isomer (TAI), which is an intrinsic hepatotoxin. TAI dosing resulted in elevated ALT activity and liver necrosis, whereas TA showed no signs of toxicity. The untargeted UPLC-MS approach revealed both previously reported and novel TA drug metabolites, including likely acyl-glucuronides and amino acid conjugates.