Purine and Pyrimidine Metabolism by N. ZOLLNER, Department Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content. -
Chapter 23 Nucleic Acids
7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids ************************************************************************************** -
Gout: a Low-Purine Diet Makes a Difference
Patient HANDOUT Gout: A Low-Purine Diet Makes a Difference Gout occurs when high levels of uric acid in your blood cause crystals to form and build up around a joint. Your body produces uric acid when it breaks down purines. Purines occur naturally in your body, but you also get them from certain foods and drinks. By following a low-purine diet, you can help your body control the production of uric acid and lower your chances of having another gout attack. Purines are found in many healthy foods and drinks. The purpose of a low-purine diet is to lower the amount of purine that you consume each day. Avoid Beer High-Purine Foods Organ meats (e.g., liver, kidneys), bacon, veal, venison Anchovies, sardines, herring, scallops, mackerel Gravy (purines leach out of the meat during cooking so gravy made from drippings has a higher concentration of purines) Limit Moderate- Chicken, beef, pork, duck, crab, lobster, oysters, shrimp : 4-6 oz daily Purine Foods Liquor: Limit alcohol intake. There is evidence that risk of gout attack is directly related to level of alcohol consumption What Other Dietary Changes Can Help? • Choose low-fat or fat-free dairy products. Studies show that low- or non-fat milk and yogurt help reduce the chances of having a gout attack. • Drink plenty of fluids (especially water) which can help remove uric acid from your body. Avoid drinks sweetened with fructose such as soft drinks. • Eat more non-meat proteins such as legumes, nuts, seeds and eggs. • Eat more whole grains and fruits and vegetables and less refined carbohydrates, such as white bread and cakes. -
Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells
Effects of allopurinol and oxipurinol on purine synthesis in cultured human cells William N. Kelley, James B. Wyngaarden J Clin Invest. 1970;49(3):602-609. https://doi.org/10.1172/JCI106271. Research Article In the present study we have examined the effects of allopurinol and oxipurinol on thed e novo synthesis of purines in cultured human fibroblasts. Allopurinol inhibits de novo purine synthesis in the absence of xanthine oxidase. Inhibition at lower concentrations of the drug requires the presence of hypoxanthine-guanine phosphoribosyltransferase as it does in vivo. Although this suggests that the inhibitory effect of allopurinol at least at the lower concentrations tested is a consequence of its conversion to the ribonucleotide form in human cells, the nucleotide derivative could not be demonstrated. Several possible indirect consequences of such a conversion were also sought. There was no evidence that allopurinol was further utilized in the synthesis of nucleic acids in these cultured human cells and no effect of either allopurinol or oxipurinol on the long-term survival of human cells in vitro could be demonstrated. At higher concentrations, both allopurinol and oxipurinol inhibit the early steps ofd e novo purine synthesis in the absence of either xanthine oxidase or hypoxanthine-guanine phosphoribosyltransferase. This indicates that at higher drug concentrations, inhibition is occurring by some mechanism other than those previously postulated. Find the latest version: https://jci.me/106271/pdf Effects of Allopurinol and Oxipurinol on Purine Synthesis in Cultured Human Cells WILLIAM N. KELLEY and JAMES B. WYNGAARDEN From the Division of Metabolic and Genetic Diseases, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27706 A B S TR A C T In the present study we have examined the de novo synthesis of purines in many patients. -
Purine Metabolism in the Protozoan Parasite Eimeria Tenella (Hypoxanthine-Xanthine-Guanine Phosphoribosyltransferase/GMP-Agarose Affinity Column/Alopurinol) C
Proc. NatL Acad. Sci. USA Vol. 78, No. 11, pp. 6618-6622, November 1981 Biochemistry Purine metabolism in the protozoan parasite Eimeria tenella (hypoxanthine-xanthine-guanine phosphoribosyltransferase/GMP-agarose affinity column/alopurinol) C. C. WANG AND P. M. SIMASHKEVICH* Merck Institute for Therapeutic Research, Rahway, New Jersey 07065 Communicated by P. Roy Vagelos, June 25, 1981 ABSTRACT Crude extracts of the oocysts ofEimeria tenella, cidia Eimenria tenella, which develops inside the caecal epithe- a protozoan parasite of the coccidium family that develops inside lial cells ofchickens, effectively takes up hypoxanthine and pref- the caecal epithelial cells ofinfected chickens, do not incorporate erentially incorporates label from it into nucleic acids when glycine or formate into purine nucleotides; this suggests lack of grown in cell culture (13, 14). Purine metabolism in this parasite capability for de novo purine synthesis by the parasite. The ex- is particularly interesting in view of the uricotelic metabolism tracts, however, contain high levels of activity of the purine sal- of chickens and the high levels of hypoxanthine known to ac- vage enzymes: hypoxanthine, guanine, xanthine, and adenine cumulate in avian tissues phosphoribosyltransferases and adenosine kinase. The absence of (15). AMP deaminase from the parasite indicates thatE. tenella cannot In this study, we have demonstrated that E. tenella cannot convert AMP to GMP; the latter thus has to be supplied by the perform de novo purine synthesis and examined the detailed hypoxanthine, xanthine, or guanine phosphoribosyltransferase of mechanism of purine salvage. A purine phosphoribosyltrans- the parasite. These three activities are associatedwith one enzyme ferase that uses hypoxanthine and guanine as well as xanthine (HXGPRTase), which has been purified to near homogeneity in as substrates (HXGPRTase) was identified in the parasite. -
Mechanism of Excessive Purine Biosynthesis in Hypoxanthine- Guanine Phosphoribosyltransferase Deficiency
Mechanism of excessive purine biosynthesis in hypoxanthine- guanine phosphoribosyltransferase deficiency Leif B. Sorensen J Clin Invest. 1970;49(5):968-978. https://doi.org/10.1172/JCI106316. Research Article Certain gouty subjects with excessive de novo purine synthesis are deficient in hypoxanthineguanine phosphoribosyltransferase (HG-PRTase [EC 2.4.2.8]). The mechanism of accelerated uric acid formation in these patients was explored by measuring the incorporation of glycine-14C into various urinary purine bases of normal and enzyme-deficient subjects during treatment with the xanthine oxidase inhibitor, allopurinol. In the presence of normal HG-PRTase activity, allopurinol reduced purine biosynthesis as demonstrated by diminished excretion of total urinary purine or by reduction of glycine-14C incorporation into hypoxanthine, xanthine, and uric acid to less than one-half of control values. A boy with the Lesch-Nyhan syndrome was resistant to this effect of allopurinol while a patient with 12.5% of normal enzyme activity had an equivocal response. Three patients with normal HG-PRTase activity had a mean molar ratio of hypoxanthine to xanthine in the urine of 0.28, whereas two subjects who were deficient in HG-PRTase had reversal of this ratio (1.01 and 1.04). The patterns of 14C-labeling observed in HG-PRTase deficiency reflected the role of hypoxanthine as precursor of xanthine. The data indicate that excessive uric acid in HG-PRTase deficiency is derived from hypoxanthine which is insufficiently reutilized and, as a consequence thereof, catabolized inordinately to uric acid. The data provide evidence for cyclic interconversion of adenine and hypoxanthine derivatives. Cleavage of inosinic acid to hypoxanthine via inosine does […] Find the latest version: https://jci.me/106316/pdf Mechanism of Excessive Purine Biosynthesis in Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency LEIF B. -
Abiotic Synthesis of Purine and Pyrimidine Ribonucleosides in Aqueous Microdroplets
Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets Inho Nama,b, Hong Gil Nama,c,1, and Richard N. Zareb,1 aCenter for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; bDepartment of Chemistry, Stanford University, Stanford, CA 94305; and cDepartment of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea Contributed by Richard N. Zare, November 27, 2017 (sent for review October 24, 2017; reviewed by Bengt J. F. Nordén and Veronica Vaida) Aqueous microdroplets (<1.3 μm in diameter on average) containing In a recent study, we showed a synthetic pathway for the 15 mM D-ribose, 15 mM phosphoric acid, and 5 mM of a nucleobase formation of Rib-1-P using aqueous, high–surface-area micro- (uracil, adenine, cytosine, or hypoxanthine) are electrosprayed from a droplets. This surface or near-surface reaction circumvents the capillary at +5 kV into a mass spectrometer at room temperature and fundamental thermodynamic problem of the condensation re- 2+ 1 atm pressure with 3 mM divalent magnesium ion (Mg )asacat- action (12). It has been suggested that the air–water interface alyst. Mass spectra show the formation of ribonucleosides that com- provides a favorable environment for the prebiotic synthesis of prise a four-letter alphabet of RNA with a yield of 2.5% of uridine (U), biomolecules (12–17). Using the Rib-1-P made in the above 2.5% of adenosine (A), 0.7% of cytidine (C), and 1.7% of inosine (I) during the flight time of ∼50 μs. -
Availability and Quality of Published Data on the Purine Content of Foods, ⋆ T Alcoholic Beverages, and Dietary Supplements ⁎ Beiwen Wua, , Janet M
Journal of Food Composition and Analysis 84 (2019) 103281 Contents lists available at ScienceDirect Journal of Food Composition and Analysis journal homepage: www.elsevier.com/locate/jfca Study Review Availability and quality of published data on the purine content of foods, ⋆ T alcoholic beverages, and dietary supplements ⁎ Beiwen Wua, , Janet M. Roselandb, David B. Haytowitzb,1, Pamela R. Pehrssonb, Abby G. Ershowc a Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA b Methods and Application of Food Composition Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA c Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20892, USA ARTICLE INFO ABSTRACT Keywords: Gout, the most common type of inflammatory arthritis and associated with elevated uric acid levels, is aglobal Purine burden. “Western” dietary habits and lifestyle, and the resulting obesity epidemic, are often blamed for the Adenine increased prevalence of gout. Purine intake has shown the biggest dietary impact on uric acid. To manage this Guanine situation, data on the purine content of foods are needed. To assess availability and quality of purine data and Hypoxanthine identify research gaps, we obtained data for four purine bases (adenine, guanine, hypoxanthine, and xanthine) in Xanthine foods, alcoholic beverages, and dietary supplements. Data were predominantly from Japan, and very little from Gout Hyperuricemia the United States. Data quality was examined using a modified version of the USDA Data Quality Evaluation Food analysis System. Purine values in 298 foods/19 food groups, 15 alcoholic beverages, and 13 dietary supplements were Food composition reported. Mean hypoxanthine (mg/100 g) in the soups/sauces group was 112 and mean adenine in poultry Data quality organs was 62.4, which were the highest among all groups. -
Nucleic Acid Metabolism in Regenerating Rat Liver I. the Rate of Deoxyribonucleic Acid Synthesis in Vivo1
Nucleic Acid Metabolism in Regenerating Rat Liver I. The Rate of Deoxyribonucleic Acid Synthesis in Vivo1 LISELOTTEI.HECHTANDVANR. POTTER (McArdie Memorial Laboratory, University of Wisconsin, Madison 6, Wis.) An ideal system for examining the relationship MATERIALS AND METHODS between ribonucleic acid (UNA) and deoxyribo- Partial hepatectomy was performed by the method of nucleic acid (DNA) metabolism in animals would Higgins and Anderson (18) on male albino rats1 weighing 180 be a tissue where synchronous cell division occurs. to 185 gm. The animals were fasted for 16-18 hours before the Isotopie tracer studies (9, 22, 25) and determina operation and fed ad libitum after the operation. At the indi cated times each animal received a single intraperitoneal in tion of the DNA content per nucleus in the liver jection of 1 mg. (5.75 pinoles) of orotic acid-6-C14which con cells of partially hepatectomized rats (25, 26, 83) tained 4.1 X 10* counts/min/mg. Following the injection, have suggested that in animals the most feasible some animals were kept in metabolism cages to facilitate col approach to this situation is by the use of re lection of urine and respiratory CO2. The animals were killed by decapitation. The liver was perfused in situ with ice-cold generating liver. The observations that incorpora 0.25 H sucrose containing 0.00018 M CaCl2, excised, and tion of isotopically labeled precursors into DNA weighed. is correlated with the occurrence of cell division Preparation of cellfractions.'—Theliver was forced through (5,17,30) and that isotopes are retained extensive a plastic mincer, and a 10 per cent homogenate of the liver was ly in the DNA of mitotically inactive and active prepared in 0.25 Msucrose + 0.00018 u CaCl2 (19) with the use cells (2, 4, 6,10-12,16, 31, 32) indicate that DNA of a Potter-Elvehjem glass homogenizer. -
Poldip2 Mediates Blood-Brain Barrier Disruption in a Model of Sepsis-Associated Encephalopathy Daniel S
Kikuchi et al. Journal of Neuroinflammation (2019) 16:241 https://doi.org/10.1186/s12974-019-1575-4 RESEARCH Open Access Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy Daniel S. Kikuchi1, Ana Carolina P. Campos2, Hongyan Qu1, Steven J. Forrester1, Rosana L. Pagano2, Bernard Lassègue1, Ruxana T. Sadikot3, Kathy K. Griendling1 and Marina S. Hernandes1* Abstract Background: Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. Methods: Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/− mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/− mice were further evaluated by immunoblotting and ELISA. -
Purine and Pyrimidine Metabolism in Human Epidermis* Jean De Bersaques, Md
THE JOURNAL OP INVESTIGATIVE DERMATOLOGY Vol. 4s, No. Z Copyright 1957 by The Williams & Wilkins Co. Fri nte,1 in U.S.A. PURINE AND PYRIMIDINE METABOLISM IN HUMAN EPIDERMIS* JEAN DE BERSAQUES, MD. The continuous cellular renewal occurring inthine, which contained 5% impurity, and for uric the epidermis requires a very active synthesisacid, which consisted of 3 main components. The reaction was stopped after 1—2 hours in- and breakdown of nuclear and cytoplasmiecubation at 37° and the products were spotted on nucleic acids. Data on the enzyme systemsWhatman 1 filter paper sheets. According to the participating in these metabolic processes arereaction products expected, a choice was made of rather fragmentary (1—9) and some are, inat least 2 among the following solvents, all used terms of biochemical time, in need of up- in ascending direction: 1. isoamyl alcohol—5% Na2HPO4 (1:1), dating. In some other publications (10—18), 2. water-saturated n-butanol, the presence and concentration of various in- 3. distilled water, termediate products is given. 4. 80% formic acid—n-hutanol——n-propanol— In this paper, we tried to collect and supple- acetone—30% trichloro-aeetic acid (5:8:4: ment these data by investigating the presence 5:3), 5. n-butanol——4% boric acid (43:7), or absence in epidermis of enzyme systems 6. isobutyrie acid—water—ammonia 0.880—ver- that have been described in other tissues. sene 0.1M(500:279:21:8), This first investigation was a qualitative one, 7. upper phase of ethyl acetate—water—formic and some limitations were set by practical acid (12:7:1), 8. -
Nitrogen-Stimulated Orotic Acid Synthesis and Nucleotide Imbalance1
[CANCER RESEARCH (SUPPL.) 52. 2082s-2084s. April I. 1992] Nitrogen-stimulated Orotic Acid Synthesis and Nucleotide Imbalance1 Willard J. Visek2 University of Illinois, College of Medicine, Urbana, Illinois 61801 Abstract bound to the inner mitochondria! membrane. The cytoplasmic enzymes reside in two separate multifunctional complexes. One Orotic acid, first discovered in ruminant milk, is an intermediate in contains carbamoyl phosphate synthetase II, aspartate trans- the pyrimidine biosynthesis pathway of animal cells. Its synthesis is carbamylase, and dihydroorotase, whereas the other includes initiated by the formation of carbamoyl phosphate (CP) in the cytoplasm, orotate phosphoribosyl transferase and orotodine-5"-phosphate with ammonia derived from glutamine. Ureotelic species also form CP in the first step of urea synthesis in liver mitochondria. For that, ammonia decarboxylase (2, 3). A deficiency of the latter two enzyme is derived from tissue fluid. When there is insufficient capacity for activities results in accumulation of orotate and a profound rise detoxifying the load of ammonia presented for urea synthesis, CP leaves in its excretion in the urine, a condition known as hereditary the mitochondria and enters the pyrimidine pathway, where orotic acid orotic aciduria (4). This bifunctional protein complex with its biosynthesis is stimulated, orotic acid excretion in urine then increases. two enzyme activities is also referred to as UMP synthase. Orotic acid synthesis is abnormally high with hereditary deficiencies of A severe deficiency of UMP synthase elevates urinary orotic urea-cycle enzymes or uridine monophosphate synthase. It is also ele acid excretion in humans to 1500 mg/day, compared with the vated by ammonia intoxication and during feeding of diets high in protein, usual 2.5 mg/day.