The Effects of Prunus Spinosa L. Flower Extracts, Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornus Canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault
Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault To cite this version: Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, et al.. Chem- ical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary and Alternative Medicine, BioMed Central, 2017, 17 (1), pp.123. 10.1186/s12906-017-1618-2. pasteur-01534565 HAL Id: pasteur-01534565 https://hal-riip.archives-ouvertes.fr/pasteur-01534565 Submitted on 7 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Lavoie et al. BMC Complementary and Alternative Medicine (2017) 17:123 DOI 10.1186/s12906-017-1618-2 RESEARCH ARTICLE Open Access Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie1, Isabelle Côté1, André Pichette1, Charles Gauthier1,2, Michaël Ouellet1, Francine Nagau-Lavoie1, Vakhtang Mshvildadze1 and Jean Legault1* Abstract Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. -
Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC
molecules Article Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves Fabyola Amaral da Silva Sa 1,3, Joelma Abadia Marciano de Paula 2, Pierre Alexandre dos Santos 3, Leandra de Almeida Ribeiro Oliveira 3, Gerlon de Almeida Ribeiro Oliveira 4, Luciano Morais Liao 4 , Jose Realino de Paula 3,* and Maria do Rosario Rodrigues Silva 1,* 1 Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, Brazil; [email protected] 2 Unit of Exact and Technologic Sciences, Goias State University, Anápolis 75132-400, Brazil; [email protected] 3 Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-170, Brazil; [email protected] (P.A.d.S.); [email protected] (L.d.A.R.O.) 4 Chemistry Institute, Federal University of Goiás, Goiânia 74690-900, Brazil; [email protected] (G.d.A.R.O.); [email protected] (L.M.L.) * Correspondence: [email protected] (J.R.d.P.); [email protected] (M.d.R.R.S.); Tel.: +55-62-3209-6127 (M.d.R.R.S.); Fax: +55-62-3209-6363 (M.d.R.R.S.) Academic Editor: Isabel C. F. R. Ferreira Received: 23 May 2017; Accepted: 29 June 2017; Published: 4 July 2017 Abstract: This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques. -
Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
Dedicated to the Memory of Ludovico Sorrentino, Emeritus Pharmacology Professor (1932-2010)
27/2/2020 PharmacologyOnLine | Front Dedicated to the Memory of Ludovico Sorrentino, Emeritus Pharmacology Professor (1932-2010) ISSN: 1827-8620 Fri, 28 Feb 2020 03:27:58 +0100 PhOL - PharmacologyOnLine Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in Pharmacology, Ethnopharmacology and Medicinal Plants. High quality papers will be accepted dealing with any aspect of Pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of Pharmacology, Ethnopharmacology and Medicinal Plants. It will be published quarterly. Pharmacologyonline accepts submissions, presented as original research (Archives and Young Researchers section), short papers, reviews, correspondence (Newsletter section) and case reports (Case Report section). Submissions regarding all types of papers are welcomed for publication. In general, all articles submitted are peer reviewed by at least two researchers expert in the field. Pharmacologyonline is an “Open Access Journal”! All articles published are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. Authors of articles published in Pharmacologyonline are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SILAE copyright and license agreement. Article-processing charges Open access publishing is not without costs. Pharmacologyonline therefore levies an article-processing charge of €300 (Euro) / $387 (USD) for authors from European Union, U.S.A., Japan and €120 (Euro) / $155 (USD) for others countries for each article accepted for publication. -
(12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul
US007399.783B2 (12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul. 15, 2008 (54) METHODS FOR THE TREATMENT OF SCAR Quercetin: Implications for the Treatment of Excessive Scars.” TSSUE Internet Web Page, vol. 57(5); Nov. 2004. Marilyn Sterling, R.D., Article: Science Beat, Internet Web Page, (75) Inventor: Richard A. Rosenbloom, Elkins Park, Natural Foods Merchandiser vol. XXIV, No. 10, p. 50, 2003. PA (US) Phan TT. See P. Tran E. Nguyen TT, Chan SY. Lee ST and Huynh H., PubMed, Internet Web Page, “Suppression of Insulin-like Growth (73) Assignee: The Quigley Corporation, Doylestown, Factor Signalling Pathway and Collagen Expression in Keloid-De rived Fibroblasts by Quercetin: It's Therapeutic Potential Use in the PA (US) Treatment and/or Prevention of Keloids.” Br. J. Dermatol., Mar. 2003, 148(3):544-52. (*) Notice: Subject to any disclaimer, the term of this Crystal Smith, Kevin A. Lombard, Ellen B. Peffley and Weixin Liu; patent is extended or adjusted under 35 "Genetic Analysis of Quercetin in Onion (Allium cepa L.) Lady U.S.C. 154(b) by 440 days. Raider.” The Texas Journal of Agriculture and Natural Resource, vol. 16 pp. 24-28, 2003. (21) Appl. No.: 11/158,986 Skin Actives Scientific L.L.C., Internet Web Page, “Quercetin.” Quercetin by Skinactives, printed on Apr. 10, 2006. (22) Filed: Jun. 22, 2005 Saulis, Alexandrina S. M.D.; Mogford, Jon H. Ph.D.; Mustoe, Tho mas A., M.D., Plastic and Reconstructive Surgery, “Effect of (65) Prior Publication Data Mederma on Hypertrophic Scarring in the Rabbit Ear Model.” Jour US 2006/O293257 A1 Dec. -
Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids
International Journal of Molecular Sciences Review Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids Mohammed Kawser Hossain, Ahmed Abdal Dayem, Jihae Han, Yingfu Yin, Kyeongseok Kim, Subbroto Kumar Saha, Gwang-Mo Yang, Hye Yeon Choi and Ssang-Goo Cho * Department of Animal Biotechnology, Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea; [email protected] (M.K.H.); [email protected] (A.A.D.); [email protected] (J.H.); [email protected] (Y.Y.); [email protected] (K.K.); [email protected] (S.K.S.); [email protected] (G.-M.Y.); [email protected] (H.Y.C.) * Correspondence: [email protected]; Tel.: +82-2-450-4207 Academic Editor: Toshiro Arai Received: 12 March 2016; Accepted: 6 April 2016; Published: 15 April 2016 Abstract: Obesity and diabetes are the most prevailing health concerns worldwide and their incidence is increasing at a high rate, resulting in enormous social costs. Obesity is a complex disease commonly accompanied by insulin resistance and increases in oxidative stress and inflammatory marker expression, leading to augmented fat mass in the body. Diabetes mellitus (DM) is a metabolic disorder characterized by the destruction of pancreatic β cells or diminished insulin secretion and action insulin. Obesity causes the development of metabolic disorders such as DM, hypertension, cardiovascular diseases, and inflammation-based pathologies. Flavonoids are the secondary metabolites of plants and have 15-carbon skeleton structures containing two phenyl rings and a heterocyclic ring. More than 5000 naturally occurring flavonoids have been reported from various plants and have been found to possess many beneficial effects with advantages over chemical treatments. -
Variability of Hordeum Vulgare L. Cultivars in Yield, Antioxidant Potential, and Cholinesterase Inhibitory Activity
sustainability Article Variability of Hordeum vulgare L. Cultivars in Yield, Antioxidant Potential, and Cholinesterase Inhibitory Activity Joanna Kobus-Cisowska 1, Piotr Szulc 2,*, Oskar Szczepaniak 1 , Marcin Dziedzi ´nski 1 , Daria Szymanowska 3 , Krystyna Szymandera-Buszka 1 , El˙zbietaGory ´nska-Goldmann 4 , Michał Gazdecki 4, Aleksandra Telichowska 1 and Marta Ligaj 5 1 Department of Gastronomy Sciences and Functional Foods, Pozna´nUniversity of Life Sciences, 60-637 Pozna´n,Poland; [email protected] (J.K.-C.); [email protected] (O.S.); [email protected] (M.D.); [email protected] (K.S.-B.); [email protected] (A.T.) 2 Department of Agronomy, Pozna´nUniversity of Life Sciences, 60-637 Pozna´n,Poland 3 Department of Biotechnology and Food Microbiology, Pozna´nUniversity of Life Sciences, 60-637 Pozna´n, Poland; [email protected] 4 Department of Economics and Economy Policy in Agribusiness, Pozna´nUniversity of Life Sciences, 60-637 Pozna´n,Poland; [email protected] (E.G.-G.); [email protected] (M.G.) 5 Department of Industrial Products and Packaging, Pozna´nUniversity of Economics and Business, 61-875 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-848-7515 Received: 8 February 2020; Accepted: 29 February 2020; Published: 3 March 2020 Abstract: Barley (Hordeum vulgare L.) is an annual plant cultivated in spring or autumn. Currently, over 70% of the cultivated barley grains are utilized for preparing fodder, while the rest is used for the production of malt and cereals in the food industry. -
Quercetin Gregory S
amr Monograph Quercetin Gregory S. Kelly, ND Description and Chemical Composition 5, 7, 3’, and 4’ (Figure 2). The difference between quercetin and kaempferol is that the latter lacks Quercetin is categorized as a flavonol, one of the the OH group at position 3’. The difference six subclasses of flavonoid compounds (Table 1). between quercetin and myricetin is that the latter Flavonoids are a family of plant compounds that has an extra OH group at position 5’. share a similar flavone backbone (a three-ringed By definition quercetin is an aglycone, lacking an molecule with hydroxyl [OH] groups attached). A attached sugar. It is a brilliant citron yellow color multitude of other substitutions can occur, giving and is entirely insoluble in cold water, poorly rise to the subclasses of flavonoids and the soluble in hot water, but quite soluble in alcohol different compounds found within these subclasses. Flavonoids also occur as either glycosides (with attached sugars [glycosyl groups]) or as aglycones (without attached sugars).1 Figure 1. 3-Hydroxyflavone Backbone with Flavonols are present in a wide variety of fruits Locations Numbered for Possible Attachment and vegetables. In Western populations, estimated of Hydroxyl (OH) and Glycosyl Groups daily intake of flavonols is in the range of 20-50 mg/day.2 Most of the dietary intake is as 3’ flavonol glycosides of quercetin, kaempferol, and 2’ 4’ myricetin rather than their aglycone forms (Table 8 1 2). Of this, about 13.82 mg/day is in the form of O 1’ 2 7 5’ quercetin-type flavonols. 2 The variety of dietary flavonols is created by the 6’ 6 differential placement of phenolic-OH groups and 3 OH attached sugars. -
WO 2018/002916 Al O
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL). -
A Nociceptinerg Rendszer Változása Hepatológiai Kórképekben, Különös
Recovery of new diarylheptanoid sources in Betulaceae Characterisation of the phenolic profile of Corylus species by HPLC-ESI-MS methods Ph.D. Dissertation Eszter Riethmüller Semmelweis University Doctoral School of Pharmaceutical Sciences Supervisor: Dr. Ágnes Kéry, Ph.D. Reviewers: Dr. Gergely Völgyi Ph.D. Dr. Attila Hunyadi Ph.D. Chair of final examination committee: Dr. Éva Lemberkovics Ph.D. Members of final examination committee: Dr. Huba Kalász D.Sc. Dr. Imre Máthé D.Sc. Budapest 2016 TABLE OF CONTENTS TABLE OF CONTENTS ......................................................................................................... 2 1. LIST OF ABBREVIATIONS ............................................................................................... 6 2. INTRODUCTION ............................................................................................................. 8 2.1. Structural features and biosynthesis of diarylheptanoids ............................. 10 2.2. Distribution of diarylheptanoids in the plant kingdom................................. 12 2.3. Biological activities of diarylheptanoids ...................................................... 14 2.3.1. Curcuma genus (Zingiberaceae)................................................................... 14 2.3.1.1. Structural features and bioavailability of curcumin ..................................... 16 2.3.1.2. Antioxidant activity of curcumin.................................................................. 16 2.3.1.3. Anti-inflammatory effect of curcumin ........................................................ -
Novel Structure-Based Profiling and Annotation Workflow—High-Throughput Analysis of Flavonoids Using the Thermo Scientific Orbitrap ID-X Tribrid MS
APPLICATION NOTE 65363 Novel structure-based profiling and annotation workflow—high-throughput analysis of flavonoids using the Thermo Scientific Orbitrap ID-X Tribrid MS Authors Introduction Reiko Kiyonami1, Iwao Sakane2, Seema Sharma1, Graeme Untargeted metabolomics aims to detect and compare as many metabolites McAlister1, Caroline Ding1 and as possible from a sample set. One bottleneck for the untargeted metabolomics Andreas Huhmer1 approach is how to annotate the identification of unknown compounds from the sample set. Often there are classes of compounds which are difficult to 1Thermo Fisher Scientific, identify and annotate due to the limited availability of authentic standards and 2ITO EN, LTD, Tokyo, Japan structural diversity of these compounds, such as steroids, phospholipids, endocannabinoids and flavonoids. These compounds share basic core structure, but have various modifications in different structure positions of the basic Keywords Flavonoid, flavonoid class, MSn structure, yielding a class of compounds with different molecular weights and spectral tree, sugar neutral loss, diversified structures. Mass Frontier 8.0 software, sub- Flavonoids are a good example of this. Flavonoids are widely found in fruits, tree search, mzCloud spectra vegetables, grains, bark, roots, stems, flowers, tea, cocoa and wine, and are library, structure annotation, powerful antioxidants with anti-inflammatory and immune system benefits. Compound Discoverer 3.0 Flavonoids have been widely studied for over a decade because of their software, FISh score diverse and important biological roles. One of the main approaches for flavonoid studies is untargeted flavonoid profiling because it provides insights into their biological functions and potential health benefits for humans. However, comprehensive identification of flavonoids remains challenging because of the structural diversity of this class.