Downloaded 9/25/2021 1:20:38 PM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornus Canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault
Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault To cite this version: Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, et al.. Chem- ical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary and Alternative Medicine, BioMed Central, 2017, 17 (1), pp.123. 10.1186/s12906-017-1618-2. pasteur-01534565 HAL Id: pasteur-01534565 https://hal-riip.archives-ouvertes.fr/pasteur-01534565 Submitted on 7 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Lavoie et al. BMC Complementary and Alternative Medicine (2017) 17:123 DOI 10.1186/s12906-017-1618-2 RESEARCH ARTICLE Open Access Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie1, Isabelle Côté1, André Pichette1, Charles Gauthier1,2, Michaël Ouellet1, Francine Nagau-Lavoie1, Vakhtang Mshvildadze1 and Jean Legault1* Abstract Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. -
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids
Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids Romain Huguet1, Tim Stratton1, Seema Sharma1, Christopher Mullen1, Jesse Canterbury1, and Vlad Zabrouskov1 1Thermo Fisher Scientific, San Jose, California, USA RESULTS A significant difference between the fragmentation approaches arises from the means in which UVPD Laser In addition to early observation of typically higher energy fragmentation channels in the UVPD, an ABSTRACT they initiate fragmentation. In HCD, energy is imparted by the initial injection of the ions into the increase in fragment ions arising from ionization of the aromatic rings or the conjugated double For this work, we used a Nd:YAG (neodymium doped yttrium aluminum garnet) laser. This is an collision cell and collisions with a relatively static gas. A greater voltage offset gives rise to more Purpose: Investigate the potential use of UVPD to provide unique and potentially diagnostic Compound Structure and UV Absorption bond chalconoids was observed (Figure 6). While ionization was largely the result of the ketone or optically pumped laser that typically emits in the infrared range (>1000nm). When operated in a energetic collisions. The energy is internally distributed with bonds breaking to form fragment ions fragmentation information for structure determination of small molecules, specifically alcohol functions present on the compounds, specific absorption of photons generated unique pulsed Q-switching mode, where the laser energy is released in a pulse when reaching a threshold, which may also undergo subsequent fragmentation events generating several generations of phenylpropanoids and chalconoids. fragmentation. Several of these fragment ions were not observed in HCD at any energy level frequency doubling of the pulses can be used to obtain shorter wavelengths. -
Influence of Whole-Wheat Consumption on Fecal Microbial Community
Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice Jose F. Garcia-Mazcorro1,2, Ivan Ivanov3, David A. Mills4 and Giuliana Noratto5,# 1 Faculty of Veterinary Medicine, Universidad Auto´noma de Nuevo Leo´n, General Escobedo, Nuevo Leon, Mexico 2 Research Group Medical Eco-Biology, Universidad Auto´noma de Nuevo Leo´n, General Escobedo, Nuevo Leon, Mexico 3 Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States 4 Department of Food Science and Technology, University of California, Davis, Davis, California, United States 5 School of Food Science, Washington State University, Pullman, Washington, United States # Current Address: Nutrition and Food Science, Texas A&M University, College Station, Texas, United States ABSTRACT The digestive tract of mammals and other animals is colonized by trillions of metabolically-active microorganisms. Changes in the gut microbiota have been associated with obesity in both humans and laboratory animals. Dietary modifications can often modulate the obese gut microbial ecosystem towards a more healthy state. This phenomenon should preferably be studied using dietary ingredients that are relevant to human nutrition. This study was designed to evaluate the influence of whole-wheat, a food ingredient with several beneficial properties, on gut microorganisms of obese diabetic mice. Diabetic (db/db) mice were fed standard (obese-control) or whole-wheat isocaloric diets (WW group) for eight weeks; Submitted 28 October 2015 non-obese mice were used as control (lean-control). High-throughput sequencing Accepted 27 January 2016 using the MiSeq platform coupled with freely-available computational tools and Published 15 February 2016 quantitative real-time PCR were used to analyze fecal bacterial 16S rRNA gene Corresponding authors sequences. -
Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC
molecules Article Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves Fabyola Amaral da Silva Sa 1,3, Joelma Abadia Marciano de Paula 2, Pierre Alexandre dos Santos 3, Leandra de Almeida Ribeiro Oliveira 3, Gerlon de Almeida Ribeiro Oliveira 4, Luciano Morais Liao 4 , Jose Realino de Paula 3,* and Maria do Rosario Rodrigues Silva 1,* 1 Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, Brazil; [email protected] 2 Unit of Exact and Technologic Sciences, Goias State University, Anápolis 75132-400, Brazil; [email protected] 3 Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-170, Brazil; [email protected] (P.A.d.S.); [email protected] (L.d.A.R.O.) 4 Chemistry Institute, Federal University of Goiás, Goiânia 74690-900, Brazil; [email protected] (G.d.A.R.O.); [email protected] (L.M.L.) * Correspondence: [email protected] (J.R.d.P.); [email protected] (M.d.R.R.S.); Tel.: +55-62-3209-6127 (M.d.R.R.S.); Fax: +55-62-3209-6363 (M.d.R.R.S.) Academic Editor: Isabel C. F. R. Ferreira Received: 23 May 2017; Accepted: 29 June 2017; Published: 4 July 2017 Abstract: This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques. -
Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
In Vitro Cytotoxic Activity of Brazilian Middle West Plant Extracts
Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 21(3): 456-464, May./Jun. 2011 In vitro cytotoxic activity of Brazilian Middle West plant extracts Talal Suleiman Mahmoud,*,1 Maria Rita Marques,2 Cláudia do Ó Pessoa,3 Leticia V. C. Lotufo,3 Hemerson I. F. Magalhães,3 Manoel O. de Moraes,3 Dênis P. de Lima,4 Aristeu G. Tininis,5 José Eduardo de Oliveira1 Article 1Instituto de Química, Universidade Estadual Paulista, Brazil, 2Laboratório de Bioquímica Vegetal, Fundação Universidade Federal do Mato Grosso do Sul, Brazil, 3 Received 15 Apr 2010 Laboratório de Oncologia Experimental, Universidade Federal do Ceará, Brazil, Accepted 14 Nov 2010 4Departamento de Química-SINTMOLB-LP4, Fundação Universidade Federal do Available online 15 Apr 2011 Mato Grosso do Sul, Brazil, 5Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus de Sertãozinho, Brazil. Abstract: Cytotoxic activity of eight plant extracts, native from the Mid- Keywords: West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was Brazilian Middle-west plants, evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single cytotoxicity 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all cancer cell lines tests. Doxorubicin (1 µg.mL-1) was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%), from different parts of the following species: Tabebuia heptaphylla (Vell.) Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. -
The Genus Alpinia: a Review of Its Phytochemistry and Pharmacology
DOI: 10.15806/j.issn.2311-8571.2015.0026 World J Tradit Chin Med 2016; 2(1): 26–41 Modern Research on Chinese Materia Medica The Genus Alpinia: A Review of Its Phytochemistry and Pharmacology Wei-Jie Zhanga, Jian-Guang Luoa and Ling-Yi Kong* aState Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China *Correspondence: Prof. Ling-Yi Kong, Department of Natural Medicinal Chemistry,China Pharmaceutical University,24 Tong Jia Xiang, Nanjing 210009, China, E-mail: [email protected] ABSTRACT Genus Alpinia consists of over 250 species, which are widely distributed in south and southeast Asia. Many plants of genus Alpinia have been used for thousands of years to treat digestive system diseases and as anti-inflammatory drugs. Phytochemical research on this genus has led to the isolation of different kinds of diarylheptanoids, terpenes triterpenoids, phenylbutanoids, lignans, and flavonoids. Experimental evidences revealed that both the crude extracts and pure constituents isolated from the genus Alpinia exhibit a wide range of bioactivities such as anti- cancer, anti-oxidant, anti-bacterial, anti-viral, cardiovascular, and digestive system protective effects. Here, we summarize the phytochemistry and pharmacology investigation of the genus Alpinia, which can provide reference for further research and drug development. Key words: Genus Alipinia, phytochemistry, pharmacology, a review Received 3 August 2015; Accept 2 March 2016 INTRODUCTION review, the conclusion can be drawn that, diarylheptanoids, terpenes and flavonoids are abundant in this genus. Genus Alpinia is a large genus of the Zingiberaceae family, which is widely distributed in many tropical regions of Asia, including China, India and Indonesia. -
Fitoterapia 145 (2020) 104610
Fitoterapia 145 (2020) 104610 Contents lists available at ScienceDirect Fitoterapia journal homepage: www.elsevier.com/locate/fitote Flavonoid, stilbene and diarylheptanoid constituents of Persicaria maculosa T Gray and cytotoxic activity of the isolated compounds Andrea Vasasa, Ildikó Lajtera, Norbert Kúsza, Péter Forgóa, Gusztáv Jakabb, Csilla Fazakasc, ⁎ Imola Wilhelmc,d, István A. Krizbaic,d, Judit Hohmanna,e, a Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary b Institute of Environmental Sciences, Faculty of Agricultural Water and Environmental Management, Tessedik Samuel College, H-5540 Szarvas, Hungary c Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary d Institute of Life Sciences, Vasile Goldiş Western University of Arad, RO-310414 Arad, Romania e Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary ARTICLE INFO ABSTRACT Keywords: Persicaria maculosa (Polygonaceae) has been used as edible and as medicinal plant since ancient times. As a result Persicaria maculosa of multistep chromatographic purifications, chalcones [2′-hydroxy-3′,4′,6′-trimethoxychalcone (1), pashanone Flavanones (2), pinostrobin chalcone (3)], flavanones [6-hydroxy-5,7-dimethoxyflavanone (4), pinostrobin (5), onysilin (6), Chalcones 5-hydroxy-7,8-dimethoxyflavanone (7)], flavonol [3-O-methylgalangin (8)], stilbene [persilben (9)], dia- Stilbene rylheptanoids [1,7-diphenylhept-4-en-3-one (10), dihydroyashabushiketol (12), yashabushidiol B (13)] and 3- Diarylheptanoids oxo-α-ionol-glucoside (11) were isolated from P. maculosa. The present paper reports for the first time the Cytotoxicity occurrence of diarylheptanoid-type constituents in the family Polygonaceae. Cytotoxicity of 1–5, 7 and 9–11 on 4 T1 mouse triple negative breast cancer cells was assayed by MTT test. -
Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development
molecules Article Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development Ahmed Mohammed AlJabr 1,†, Abid Hussain 1,†,*, Muhammad Rizwan-ul-Haq 1 and Hassan Al-Ayedh 2 1 Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Hofuf 31982, Al-Ahsa, Saudi Arabia; [email protected] (A.M.A.); [email protected] (M.R.-H.) 2 Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +966-135-895-851 † These authors contributed equally to this work. Academic Editor: Marcello Iriti Received: 27 December 2016; Accepted: 17 January 2017; Published: 20 January 2017 Abstract: This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. -
Synthesis of Natural and Non-Natural Diarylheptanoids and Evaluation of Their Neuroprotective Activity
Synthesis of natural and non-natural diarylheptanoids and evaluation of their neuroprotective activity Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Petr Jirásek aus Prag 2014 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes Die vorliegende Arbeit wurde im Zeitraum vom Januar 2011 bis September 2014 unter der Leitung von Prof. Dr. Jörg Heilmann und PD Dr. Sabine Amslinger am Lehrstuhl für Pharmazeutische Biologie und am Institut für Organische Chemie der Universität Regensburg angefertigt. Das Promotionsgesuch wurde eingereicht am: Tag der mündlichen Prüfung: 29.09.2014 Prüfungsausschuss: Prof. Dr. Jörg Heilmann (Erstgutachter) PD Dr. Sabine Amsliger (Zweitgutachter) Prof. Dr. Sigurd Elz (dritter Prüfer) Prof. Dr. Siavosh Mahboobi (Vorsitzender) Danksagung An dieser Stelle möchte ich mich bei allen Personen bedanken, die zum Gelingen dieser Arbeit beigetragen haben: bei Prof. Dr. Jörg Heilmann für die Vergabe dieses spannenden Themas, für viele wertvolle Anregungen, sein Vertrauen und für die schöne Jahre in seiner Arbeitsgruppe; bei PD Dr. Sabine Amslinger für die lehrreiche Zeit in Ihrem Umfeld, für all die Hilfe in Sachen organischer Chemie und für die herzliche Aufnahme in Ihrem Arbeitskreis; mein besonderer Dank gilt dem Deutschen Akademischen Austauschdienst für die Finanzierung meiner Promotion; bei allen jetzigen und ehemaligen Kolleginen und Kollegen am Lehrstuhl für Pharmazeutische Biologie möchte ich mich für das besonders freundliche Arbeitsklima und ihre Hilfsbereitschaft ganz herzlich bedanken; mein Dank gilt natürlich auch meinen Laborkolleginen und Laborkollegen von AK Amslinger für die angenehme Laborzeit und viele anregende Disskusionen; bei Frau Gabriele Brunner für ihre Geduld und Hilfe bei allen praktischen Aspekten der alltägigen Laborarbeit, genauso wie bei Frau Anne Grashuber für ihre unabdingbare und freundliche Unterstützung bei der Betreung der Praktika; weiterhin möchte ich mich bei Dr. -
Pdf of Article
ORIGINAL ARTICLE Org. Commun. 11:1 (2018) 23-34 Synthesis, theoretical calculation and α-glucosidase inhibition of new chalcone oximes Seda Fandaklı 1, İnci Selin Doğan 2, Hasan Erdinç Sellitepe 2, Ahmet Yaşar 2 and Nurettin Yaylı *2 1Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Türkiye 2Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Türkiye (Received February 01, 2018; Revised February 17, 2018; February 20, 2018) Abstract: A series of eleven hydroxy and methoxy substituted new chalcone oximes (2a-2k) were synthesized by the condensation of chalcone (1a-1k) with hydroxylamine hydrochloride in pyridine. Structures of the synthesized compounds were characterized using NMR (1D; 1H, 13C/APT and 2D 1H-1H COSY, NOESY and ROESY), FT-IR, UV, LC-MS spectral data and elemental analysis. These synthetic compounds (2a-k) were screened for their α-glucosidase inhibition. The most α-glucosidase inhibitory activity were observe on compounds 2a and 2b with in the range of 1.61-3.36 µM (IC50 values) which were more active then acarbose (IC50, 13,34 µM). IC50 values of other synthesized compounds 2c-2h are within the range of 7,25-25,55 µM which were more or as active as acarbose, but, IC50 values for compounds 2j-2k were not observed. The geometric isomers of compounds 2a-2k were calculated theoretically. Experimental and theoretical calculations showed that cisoid 1E,2E is the most stable geometrical isomer of all. Keywords: Chalcone; chalcone oxime; α-glucosidase inhibition. © 2018 ACG Publications. All rights reserved. 1. Introduction α-Glucosidase has a crucial role for the biosynthesis of glycoproteins and digestion of carbohydrates.1 Inhibition of enzyme plays an important role for the treatment of degenerative diseases.