Journal of Chromatography

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Chromatography aphy & S r ep og a t r a a t m i o o r n Lilla et al., J Chromatograph Separat Techniq 2012, 3:2 h T e C c f Journal of Chromatography h DOI: 10.4172/2157-7064.1000122 o n l i a q ISSN:n 2157-7064 u r e u s o J Separation Techniques Research Article OpenOpen Access Access Structural Characterization of Transglutaminase-Catalyzed Casein Cross- Linking Sergio Lilla1,2, Gianfranco Mamone2, Maria Adalgisa Nicolai1, Lina Chianese1, Gianluca Picariello2, Simonetta Caira2 and Francesco Addeo1,2* 1Dipartimento di Scienza degli Alimenti, University of Naples “Federico II”, Parco Gussone, Portici 80055, Italy 2Istituto di Scienze dell’Alimentazione (ISA) – CNR, Via Roma 64, 83100 Avellino, Italy Abstract Microbial transglutaminase is used in the food industry to improve texture by catalyzing protein cross-linking. Casein is a well-known transglutaminase substrate, but the complete role of glutamine (Q) and lysine (K) residues in its cross-linking is not fully understood. In this study, we describe the characterization of microbial Transglutaminase -modified casein using a combination of immunological and proteomic techniques. Using 5-(biotinamido)pentylamine as an acyl acceptor probe, three Q residues of β-casein and one of αs1-casein were found to participate as acyl donors. However, no Q-residues were involved in network formation with κ-casein or αs2-casein. Q and K residues in the ε-(γ-glutamyl)lysine-isopeptide bonds β-casein were identified by nanoelectrospray tandem mass spectrometry of the proteolytic digests. This work reports our progress toward a better understanding of the function and mechanism of action of microbial transglutaminase-mediated proteins. The results suggest a possible role for transglutaminase in the formation of casein micelles. Keywords: Microbial transglutaminase; Casein; Milk; ε-( γ After ingestion, ε-(γ-glutamyl) lysine isopeptide is somewhat resistant -glutamyl)-lysine isodipeptide bond; 5-(biotinamido) pentylamine; to digestive enzymes [21]. The ε-(γ-glutamyl) lysine isopeptide bond Tandem mass spectrometry is cleaved by γ-glutamylcyclotransferase which releases L-Lys and 5-oxoproline. The 5-oxoproline is then further metabolized to glutamic Introduction acid by 5-oxoprolinase (5-OP) [1]. Foods treated with mTG have Transglutaminase (TG) is one of a family of enzymes that catalyzes been approved for human consumption by the US Food and Drug an acyl transfer reaction in the presence of Ca2+. This reaction forms Administration, and its application has expanded to all foods. amide bonds between the ε--carboxamide groups of peptide-bound Many food proteins such as casein (CN) are excellent substrates for glutamine (Q) residues and a variety of primary amines [1]. In TG [22-24], primarily due to their highly accessible and flexible open the reaction catalyzed by TG, Q residues serve as the acyl donors chain structure. Milk with a high degree of cross-linking is unable to and ε-amino groups of lysine (K) as the acyl acceptors. TG shows coagulate after the addition of rennet, probably due to failure during substrate selectivity for Q residues as the acyl donors. However, it the primary phase of milk clotting. This hinders the nonenzymatic is less selective with regards to the acyl acceptor (K-residue) [2,3]. secondary phase that is initiated when a sufficient amount of k-CN is The K-residue can be replaced by low molecular weight amines, hydrolyzed [25,26]. such as monodansylcadaverine, fluoresceincadaverine [4,5] and 5-biotinamidopentylamine [6], and also by dansylated or biotinylated CN is a better substrate for TG than whey proteins. However, the glutamine-containing peptides [7]. In the absence of a K-residue or denaturation of whey proteins makes their amino groups accessible to other amines, water can act as the nucleophile, which results in the TG, which allows cross-linking to occur [27-29]. CN is an amphiphilic deamidation of Q-residues to glutamic acid [4,8,9]. The ability of protein which can self-assemble into micelles stabilized by both TG to catalyze cross-linking, incorporate of amines, and deamidate hydrophobic interactions and calcium phosphate bridges. The amino 2+ modifies the functional properties of proteins [10-13]. Ca -dependent acid sequences of αs1-, αs2-, β-, and κ-CN, their relative proportions and mammalian TG (i.e., blood coagulation factor FaXIII and tissue TG) total CN vary in whole milk depending on the species. was the first TG to be investigated for application in the food industry TG-mediated modification of CN and its exact mechanisms have [11,14,15], but the high cost of its extraction and purification limited its use. Hence, the major source of the enzyme has become Ca2+- independent microbial TG (mTG), which is largely produced through *Corresponding author: Francesco Addeo, Dipartimento di Scienza degli fermentation technology utilizing Streptoverticullium species [16 ]. Alimenti, University of Naples “Federico II”, Parco Gussone, Portici 80055, Italy, Ca2+-independent mTG is useful for the modification of the functional E-mail: [email protected] properties of food proteins (i.e., milk proteins, soybean globulins, Received March 14, 2012; Accepted April 06, 2012; Published April 08, 2012 gluten, actin, myosin, and egg proteins) [17]. The amino acid sequence Citation: Lilla S, Mamone G, Nicolai MA, Chianese L, Picariello G, et al. (2012) of mammalian TG is slightly different from that of mTG, although they Structural Characterization of Transglutaminase-Catalyzed Casein Cross-Linking. both have Cys in the active site. mTG is 331 amino acids long with a J Chromatograph Separat Techniq 3:122. doi:10.4172/2157-7064.1000122 molecular mass of 37,863 Da, and its optimum pH is in the range from Copyright: © 2012 Lilla S, et al. This is an open-access article distributed under 5-8 [18]. Digestibility of products containing ε-(γ-glutamyl) lysine the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and isopeptide has been investigated in different circumstances [19,20]. source are credited. J Chromatograph Separat Techniq ISSN:2157-7064 JCGST, an open access journal Volume 3 • Issue 2 • 1000122 Citation: Lilla S, Mamone G, Nicolai MA, Chianese L, Picariello G, et al. (2012) Structural Characterization of Transglutaminase-Catalyzed Casein Cross-Linking. J Chromatograph Separat Techniq 3:122. doi:10.4172/2157-7064.1000122 Page 2 of 9 not been fully elucidated. The interaction of TG with its substrate in PBS/0.1%SDS, and the beads were washed as described in “mTG depends not only on the primary amino acid sequence, but also the reaction” section. The enriched biotinylated peptides were eluted by secondary and/or tertiary sequence. It also appears necessary that Q be adding 25 ml of 70% acetonitrile/2% formic acid/0.2 mM biotin and exposed on the surface of CN fractions so that it can react with TG. It is incubating for 30 min at 37˚C. The assay was performed in parallel on possible for Q residues to be partially exposed on the outer CN fractions a sample incubated with no mTG and 5BP. of micelles. However, other Q residues may be partially blocked by RP- HPLC and LC-ES-MS analysis steric hindrance, which will make the protein substrate less accessible to TG. In any case, it seems that only a small fraction of Q residues Liquid chromatography was performed using a 2.1 mm i.d. x 250 is transamidated at any given time [30]. Because CN preparations mm, C18, 5 µm reverse-phase column (Vydac, Hesperia, CA, USA) incubated for different lengths of time present different rheological with a flow rate of 0.2 ml/min on an Agilent 1100 modular system (Palo properties, the cross-linking of CN from four species (cow, sheep, goat, Alto, CA, USA). Solvent A was 0.1% trifluoroacetic acid (TFA) (v/v) in and buffalo) has not been investigated. Ovine milk in particular has water, and solvent B was 0.1% TFA in acetonitrile. The proteins were received little attention, even though it possesses the highest level of separated using a gradient from 35% to 50% B over 60 min. Peptide CN. The present work aims to identify the in vitro susceptibility of CN separation was instead performed using a gradient from 5% to 70% fractions to mTG-mediated modification. Some Q-donor sites have B over 90 min. Peaks were monitored by UV detection at 220 nm. been examined for their role in the assembly and structure of the CN Mass spectrometry (MS) was performed using a Platform (Micromass, micelle. This study reports the identification of several amino acid Manchester, UK) equipped with standard electrospray. The eluent sequences of ovine CN that act as glutamine-donor substrates of mTG. from the Vydac column chromatography was injected into the mass Materials and Methods spectrometer online with the UV detector via a 75 µm i.d. fused silica capillary. The mass spectra were scanned from 2000 to 400 atomic mass Trypsin, endoproteinase Glu-C, dithiothreitol (DTT), units at a scan cycle of 5 s/scan. The source temperature was held at 5-(biotinamido) pentylamine (5-BP), α-cyano-4-hydroxycinnamic 200˚C and the cone voltage at 40 V. Mass scale calibration was obtained acid, and sinapinic acid, renin substrate tetradecapeptide porcine using myoglobin as the reference compound. were purchased from Sigma (St. Louis, Missouri, USA). mTG from MALDI -TOF MS analyses Streptoverticillium mobaraense was obtained from Ajinomoto (Tokyo, Japan). MALDI-MS TOF experiments were carried out on a PerSeptive Biosystems (Framingham, MA, USA) Voyager DE-PRO instrument Ovine CN from single milk was skimmed by centrifugation at 3000 equipped with a N2 laser (337 nm, 3 ns pulse width). Each spectrum rpm, and the isoelectric CN was prepared according to the procedure of was taken with the following procedure: a 0.5 µL-aliquot of sample was Aschaffenburg [31].
Recommended publications
  • ABSTRACT Studies on Bovine Γ-Glutamylamine Cyclotransferase
    ABSTRACT Studies on Bovine γ-Glutamylamine Cyclotransferase Maryuri Roca Mentor: Mary Lynn Trawick, Ph.D. The purification and study of proteins are cooperative processes because at least partially purified protein is needed in order to study its properties, and certain information about the protein’s properties is required in order to design its purification. Particularly difficult to purify is γ- glutamylamine cyclotransferase (γGACT ) which catalyzes the cyclization of the γ-glutamyl moiety in L-γ-glutamylamines, notably Nε−(γ-glutamyl)lysine. From this last activity the function of the enzyme is speculated to be related to the catabolism of transglutaminase products; although, there is no direct evidence of this. Electrophoretically pure bovine γGACT was obtained using preparative ultracentrifugation, anion exchange chromatography on DEAE-Sepharose, ammonium sulfate fractionation and precipitation, size exclusion chromatography on Sephacryl S100, anion exchange chromatography on Mono-Q under reducing conditions, isoelectric focusing of the alkylated sample, electroelution, electrophoresis, ultrafiltration, and lyophilization. The enzyme was purified more than 2,000 fold to a specific activity of more than 1,300U/mg of enzyme. A monomeric enzyme of molecular mass of 22,000 Daltons was observed. Anion exchange chromatography on a Mono Q GL column revealed two forms of the enzyme with pIs of 6.86 and 6.62 under non-reducing conditions, and a single form of pI 6.62 under reducing conditions. γGACT was then subjected to analytical isoelectric focusing and the active fraction appeared as a single band on SDS-PAGE. Amino acid sequencing of the tryptic digest of the band from SDS- PAGE corresponding to the enzyme was carried out by microcapillary reverse-phase HPLC nano-eletrospray tandem mass spectrometry; 42 proteins and protein fragments of similar mass and pI as that of γGACT were obtained.
    [Show full text]
  • Amidoligases with ATP-Grasp, Glutamine Synthetase-Like and Acetyltransferase-Like Domains: Synthesis of Novel Metabolites and Peptide Modifications of Proteinswz
    View Article Online / Journal Homepage / Table of Contents for this issue Molecular BioSystems This article was published as part of the Computational and Systems Biology themed issue Please take a look at the full table of contents to access the other papers in this issue. Open Access Article. Published on 13 October 2009. Downloaded 9/27/2021 9:23:51 AM. View Article Online PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteinswz Lakshminarayan M. Iyer,a Saraswathi Abhiman,a A. Maxwell Burroughsb and L. Aravind*a Received 28th August 2009, Accepted 28th August 2009 First published as an Advance Article on the web 13th October 2009 DOI: 10.1039/b917682a Recent studies have shown that the ubiquitin system had its origins in ancient cofactor/amino acid biosynthesis pathways. Preliminary studies also indicated that conjugation systems for other peptide tags on proteins, such as pupylation, have evolutionary links to cofactor/amino acid biosynthesis pathways. Following up on these observations, we systematically investigated the non-ribosomal amidoligases of the ATP-grasp, glutamine synthetase-like and acetyltransferase folds by classifying the known members and identifying novel versions. We then established their contextual connections using information from domain architectures and conserved gene neighborhoods. This showed remarkable, previously uncharacterized functional links between diverse peptide ligases, several peptidases of unrelated folds and enzymes involved in synthesis of modified amino acids. Using the network of contextual connections we were able to predict numerous novel pathways for peptide synthesis and modification, amine-utilization, secondary metabolite synthesis and potential peptide-tagging systems.
    [Show full text]
  • Computational and Systems Biology Themed Issue
    View Article Online / Journal Homepage / Table of Contents for this issue Molecular BioSystems This article was published as part of the Computational and Systems Biology themed issue Please take a look at the full table of contents to access the other papers in this issue. Open Access Article. Published on 13 October 2009. Downloaded 9/23/2021 6:41:00 PM. View Article Online PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteinswz Lakshminarayan M. Iyer,a Saraswathi Abhiman,a A. Maxwell Burroughsb and L. Aravind*a Received 28th August 2009, Accepted 28th August 2009 First published as an Advance Article on the web 13th October 2009 DOI: 10.1039/b917682a Recent studies have shown that the ubiquitin system had its origins in ancient cofactor/amino acid biosynthesis pathways. Preliminary studies also indicated that conjugation systems for other peptide tags on proteins, such as pupylation, have evolutionary links to cofactor/amino acid biosynthesis pathways. Following up on these observations, we systematically investigated the non-ribosomal amidoligases of the ATP-grasp, glutamine synthetase-like and acetyltransferase folds by classifying the known members and identifying novel versions. We then established their contextual connections using information from domain architectures and conserved gene neighborhoods. This showed remarkable, previously uncharacterized functional links between diverse peptide ligases, several peptidases of unrelated folds and enzymes involved in synthesis of modified amino acids. Using the network of contextual connections we were able to predict numerous novel pathways for peptide synthesis and modification, amine-utilization, secondary metabolite synthesis and potential peptide-tagging systems.
    [Show full text]
  • Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis
    cells Review Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis Hideki Tatsukawa * and Kiyotaka Hitomi Cellular Biochemistry Laboratory, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8601, Aichi, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-52-747-6808 Abstract: Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslink- ing between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open confor- mation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial Citation: Tatsukawa, H.; Hitomi, K. roles of TG2, focusing on cell death/survival and fibrosis.
    [Show full text]
  • 1114 Tissue Transglutaminase (TG2) and Mitochondrial Function And
    [Frontiers In Bioscience, Landmark, 22, 1114-1137, March 1, 2017] Tissue transglutaminase (TG2) and mitochondrial function and dysfunction Thung-S. Lai 1, Cheng-Jui Lin 2,3, Yu-Ting Wu4, Chih-Jen Wu2,5,6 1Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan, ROC, 2Nephrology/ Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC, 3Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan, ROC, 4Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC, 6Graduate Institute of Medical Science, Taipei Medical University, Taipei, Taiwan, ROC TABLE OF CONTENTS 1. Abstract 2. Introduction 3. TG2: a multifunctional enzyme. 3.1. Transamidation Reaction (TGase function) 3.1.1. Inter- or intra-molecular crosslinking 3.1.2. Aminylation 3.1.3. Deamidation 3.2. Isopeptidase activity 3.3. Protein Disulfide Isomerase (PDI) activity 3.4. GTP/ATP hydrolysis activity 4. Structure and function of TG2 4.1. TGase active site 4.2. GTP and ATP binding site 5. Regulation of in vivo TGase activity by GTP, redox, and nitric oxide (NO) 5.1. Regulation of in vivo TGase activity by GTP 5.2. Regulation of in vivo TGase activity by redox 5.3. Regulation of in vivo TGase activity by NO 6. Regulation of TG2 expression 6.1. NFkB regulates the expression of TG2 6.2. Hypoxia regulates the expression of TG2 6.3. TGFb regulates the expression of TG2 6.4. Oxidative stress and EGF up-regulate the expression of TG2. 7. TG2 is localized in mitochondria and several other locations 8.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_003855395Cyc: Shewanella livingstonensis LMG 19866 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Mitochondria Targeting As an Effective Strategy for Cancer Therapy
    International Journal of Molecular Sciences Review Mitochondria Targeting as an Effective Strategy for Cancer Therapy Poorva Ghosh , Chantal Vidal, Sanchareeka Dey and Li Zhang * Department of Biological Sciences, the University of Texas at Dallas, Richardson, TX 75080, USA; [email protected] (P.G.); [email protected] (C.V.); [email protected] (S.D.) * Correspondence: [email protected]; Tel.: +972-883-5757 Received: 25 February 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Mitochondria are well known for their role in ATP production and biosynthesis of macromolecules. Importantly, increasing experimental evidence points to the roles of mitochondrial bioenergetics, dynamics, and signaling in tumorigenesis. Recent studies have shown that many types of cancer cells, including metastatic tumor cells, therapy-resistant tumor cells, and cancer stem cells, are reliant on mitochondrial respiration, and upregulate oxidative phosphorylation (OXPHOS) activity to fuel tumorigenesis. Mitochondrial metabolism is crucial for tumor proliferation, tumor survival, and metastasis. Mitochondrial OXPHOS dependency of cancer has been shown to underlie the development of resistance to chemotherapy and radiotherapy. Furthermore, recent studies have demonstrated that elevated heme synthesis and uptake leads to intensified mitochondrial respiration and ATP generation, thereby promoting tumorigenic functions in non-small cell lung cancer (NSCLC) cells. Also, lowering heme uptake/synthesis inhibits mitochondrial OXPHOS and effectively reduces oxygen consumption, thereby inhibiting cancer cell proliferation, migration, and tumor growth in NSCLC. Besides metabolic changes, mitochondrial dynamics such as fission and fusion are also altered in cancer cells. These alterations render mitochondria a vulnerable target for cancer therapy. This review summarizes recent advances in the understanding of mitochondrial alterations in cancer cells that contribute to tumorigenesis and the development of drug resistance.
    [Show full text]
  • Associated Gene Expression Profiles in Multiple Sclerosis Jeroen Melief1, Marie Orre2, Koen Bossers3, Corbert G
    Melief et al. Acta Neuropathologica Communications (2019) 7:60 https://doi.org/10.1186/s40478-019-0705-7 RESEARCH Open Access Transcriptome analysis of normal-appearing white matter reveals cortisol- and disease- associated gene expression profiles in multiple sclerosis Jeroen Melief1, Marie Orre2, Koen Bossers3, Corbert G. van Eden1, Karianne G. Schuurman1, Matthew R. J. Mason1,3, Joost Verhaagen3, Jörg Hamann1,4 and Inge Huitinga1* Abstract Inter-individual differences in cortisol production by the hypothalamus–pituitary–adrenal (HPA) axis are thought to contribute to clinical and pathological heterogeneity of multiple sclerosis (MS). At the same time, accumulating evidence indicates that MS pathogenesis may originate in the normal-appearing white matter (NAWM). Therefore, we performed a genome-wide transcriptional analysis, by Agilent microarray, of post-mortem NAWM of 9 control subjects and 18 MS patients to investigate to what extent gene expression reflects disease heterogeneity and HPA- axis activity. Activity of the HPA axis was determined by cortisol levels in cerebrospinal fluid and by numbers of corticotropin-releasing neurons in the hypothalamus, while duration of MS and time to EDSS6 served as indicator of disease severity. Applying weighted gene co-expression network analysis led to the identification of a range of gene modules with highly similar co-expression patterns that strongly correlated with various indicators of HPA-axis activity and/or severity of MS. Interestingly, molecular profiles associated with relatively
    [Show full text]
  • Celiac Disease in the Pediatric Patient
    Laboratory Services Celiac Disease in the Pediatric Patient What is Celiac Disease? Celiac disease is a common chronic condition that affects about 1% of the general population. It occurs in genetically predisposed individuals and is triggered by the ingestion of products that contain wheat, barley or rye, collectively known as “gluten”. Ingestion of gluten initiates an inflammatory cascade in the intestines that causes progressive destruction of the small intestinal villi. Symptoms of Celiac Disease Symptoms of celiac disease are highly variable and may be gastrointestinal or non-gastrointestinal as shown in the table. • Symptoms may occur singly or in combination • Age of onset can be any time from infancy to late in adulthood • Young children tend to have predominantly gastrointestinal symptoms while older children and adults are more likely to have non-gastrointestinal manifestations initially Because of the variable manifestations, a high index of suspicion for the disease and liberal use of screening tests is needed to avoid unnecessary delays in diagnosis. Associated Conditions. Some people are at increased risk for celiac disease because of an associated condition. These individuals may have no symptoms or very minor complaints but when investigated are found to have the intestinal damage. Groups at increased risk for celiac disease include: • First degree relatives of an index case • Turner syndrome • Type 1 diabetics • Selective IgA deficiency • Down Syndrome • Other autoimmune diseases (autoimmune hepatitis, thyroiditis) Diagnosing Celiac Disease Blood tests looking for specific antibodies that are found when the disease is active can be used to screen for celiac disease. Recommended tests include: • Tissue transglutaminase antibody (TTG) • Endomysium antibody (EMA) • Deamidated gliadin peptide antibodies (DGP) The TTG-IgA antibody provides the most cost effective and reliable test to screen for celiac disease.
    [Show full text]
  • The Human Gamma-Glutamyltransferase Gene Family
    Hum Genet (2008) 123:321–332 DOI 10.1007/s00439-008-0487-7 REVIEW The human gamma-glutamyltransferase gene family Nora Heisterkamp · John GroVen · David Warburton · Tam P. Sneddon Received: 9 November 2007 / Accepted: 6 March 2008 / Published online: 21 March 2008 © Springer-Verlag 2008 Abstract Assays for gamma-glutamyl transferase related genes or sequences. These sequences were given (GGT1, EC 2.3.2.2) activity in blood are widely used in a multiple diVerent names, leading to inconsistencies and clinical setting to measure tissue damage. The well-charac- confusion. Here we systematically evaluated all human terized GGT1 is an extracellular enzyme that is anchored to sequences related to GGT1 using genomic and cDNA data- the plasma membrane of cells. There, it hydrolyzes and base searches and identiWed thirteen genes belonging to the transfers -glutamyl moieties from glutathione and other extended GGT family, of which at least six appear to be -glutamyl compounds to acceptors. As such, it has a critical active. In collaboration with the HUGO Gene Nomencla- function in the metabolism of glutathione and in the con- ture Committee (HGNC) we have designated possible version of the leukotriene LTC4 to LTD4. GGT deWciency active genes with nucleotide or amino acid sequence simi- in man is rare and for the few patients reported to date, larity to GGT1, as GGT5 (formerly GGL, GGTLA1/GGT- mutations in GGT1 have not been described. These patients rel), GGT6 (formerly rat ggt6 homologue) and GGT7 (for- do secrete glutathione in urine and fail to metabolize LTC4. merly GGTL3, GGT4). Two loci have the potential to Earlier pre-genome investigations had indicated that encode only the light chain portion of GGT and have now besides GGT1, the human genome contains additional been designated GGTLC1 (formerly GGTL6, GGTLA4) and GGTLC2.
    [Show full text]
  • The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins
    International Journal of Molecular Sciences Review The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins Sailen Barik 3780 Pelham Drive, Mobile, AL 36619, USA; [email protected] Received: 2 November 2020; Accepted: 17 November 2020; Published: 20 November 2020 Abstract: Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms. Keywords: tryptophan; indole; virus; immunity; serotonin; kynurenine; codon 1. Introduction Tryptophan (Trp, W) is one of three aromatic amino acids that minimally contain a six-membered benzene ring in their side chains, the other two being phenylalanine (Phe, F) and tyrosine (Tyr, Y).
    [Show full text]
  • Setd1 Histone 3 Lysine 4 Methyltransferase Complex Components in Epigenetic Regulation
    SETD1 HISTONE 3 LYSINE 4 METHYLTRANSFERASE COMPLEX COMPONENTS IN EPIGENETIC REGULATION Patricia A. Pick-Franke Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Biochemistry and Molecular Biology Indiana University December 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. _____________________________________ David Skalnik, Ph.D., Chair _____________________________________ Kristin Chun, Ph.D. Master’s Thesis Committee _____________________________________ Simon Rhodes, Ph.D. ii DEDICATION This thesis is dedicated to my sons, Zachary and Zephaniah who give me great joy, hope and continuous inspiration. I can only hope that I successfully set a good example demonstrating that one can truly accomplish anything, if you never give up and reach for your dreams. iii ACKNOWLEDGEMENTS I would like to thank my committee members Dr. Skalnik, Dr. Chun and Dr. Rhodes for allowing me to complete this dissertation. They have been incredibly generous with their flexibility. I must make a special thank you to Jeanette McClintock, who willingly gave her expertise in statistical analysis with the Cfp1 microarray data along with encouragement, support and guidance to complete this work. I would like to thank Courtney Tate for her ceaseless willingness to share ideas, and her methods and materials, and Erika Dolbrota for her generous instruction as well as the name of a good doctor. I would also like to acknowledge the superb mentorship of Dr. Jeon Heong Lee, PhD and the contagious passion and excitement for the life of science of Dr.
    [Show full text]