Chapter 11--Rosgen Geomorphic Channel Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A 3D Forward Stratigraphic Model of Fluvial Meander-Bend Evolution for Prediction of Point-Bar Lithofacies Architecture
This is a repository copy of A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116031/ Version: Accepted Version Article: Yan, N orcid.org/0000-0003-1790-5861, Mountney, NP orcid.org/0000-0002-8356-9889, Colombera, L et al. (1 more author) (2017) A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture. Computers & Geosciences, 105. pp. 65-80. ISSN 0098-3004 https://doi.org/10.1016/j.cageo.2017.04.012 © 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Author’s Accepted Manuscript A 3D forward stratigraphic model of fluvial meander-bend evolution for prediction of point-bar lithofacies architecture Na Yan, Nigel P. -
PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms. -
Explain How Rivers Adjust to a Change in Base Level with Reference to Examples You Have Studied (2013 Q1C)
Isostasy | A1 Sample answer Explain how rivers adjust to a change in base level with reference to examples you have studied (2013 Q1C) Isostatic uplift is when land rises above sea level because of tectonic activity. This is usually due to a large weight being removed from the land e.g. when an ice cap melts. Eustatic changes are when the sea level drops. This is due to water being locked away somewhere e.g., in a glacier. When it melts, the sea level rises again. The River Nore in Kilkenny has experienced a change in base level. This can be seen since there are knickpoints along it, roughly 150-200m above sea level. A knickpoint can be seen when the sea level drops and a river rejuvenates because the river starts vertically eroding once more. Rejuvenation is the term used to describe a river that starts eroding like a youthful river even when it is in its old age stage. A knickpoint is a spot where the newly eroded river profile meets the old river profile. Sometimes you will find a waterfall here. River terraces are also found where rejuvenation has occurred. This is when a river forms a new floodplain that is lower down than the last. The remnants of the old floodplain are left as steps and are called terraces. If there are terraces on both sides of the river, they are called paired terraces. Terraces can be formed multiple times if the river rejuvenates more than once, appearing as a series of steps down to the river. -
Lesson 4: Sediment Deposition and River Structures
LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Modifying Wepp to Improve Streamflow Simulation in a Pacific Northwest Watershed
MODIFYING WEPP TO IMPROVE STREAMFLOW SIMULATION IN A PACIFIC NORTHWEST WATERSHED A. Srivastava, M. Dobre, J. Q. Wu, W. J. Elliot, E. A. Bruner, S. Dun, E. S. Brooks, I. S. Miller ABSTRACT. The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow, soil water, and deep percolation. However, to adequately simulate hydrologic conditions with significant quantities of groundwater flow into streams, a baseflow component for WEPP is needed. The objectives of this study were (1) to simulate streamflow in the Priest River Experimental Forest in the U.S. Pacific Northwest using the WEPP model and a baseflow routine, and (2) to compare the performance of the WEPP model with and without including the baseflow using observed streamflow data. The baseflow was determined using a linear reservoir model. The WEPP- simulated and observed streamflows were in reasonable agreement when baseflow was considered, with an overall Nash- Sutcliffe efficiency (NSE) of 0.67 and deviation of runoff volume (Dv) of 7%. In contrast, the WEPP simulations without including baseflow resulted in an overall NSE of 0.57 and Dv of 47%. On average, the simulated baseflow accounted for 43% of the streamflow and 12% of precipitation annually. Integration of WEPP with a baseflow routine improved the model’s applicability to watersheds where groundwater contributes to streamflow. Keywords. Baseflow, Deep seepage, Forest watershed, Hydrologic modeling, Subsurface lateral flow, Surface runoff, WEPP. -
Late Holocene Sea Level Rise in Southwest Florida: Implications for Estuarine Management and Coastal Evolution
LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION Dana Derickson, Figure 2 FACULTY Lily Lowery, University of the South Mike Savarese, Florida Gulf Coast University Stephanie Obley, Flroida Gulf Coast University Leonre Tedesco, Indiana University and Purdue Monica Roth, SUNYOneonta University at Indianapolis Ramon Lopez, Vassar College Carol Mankiewcz, Beloit College Lora Shrake, TA, Indiana University and Purdue University at Indianapolis VISITING and PARTNER SCIENTISTS Gary Lytton, Michael Shirley, Judy Haner, STUDENTS Leslie Breland, Dave Liccardi, Chuck Margo Burton, Whitman College McKenna, Steve Theberge, Pat O’Donnell, Heather Stoffel, Melissa Hennig, and Renee Dana Derickson, Trinity University Wilson, Rookery Bay NERR Leda Jackson, Indiana University and Purdue Joe Kakareka, Aswani Volety, and Win University at Indianapolis Everham, Florida Gulf Coast University Chris Kitchen, Whitman College Beth A. Palmer, Consortium Coordinator Nicholas Levsen, Beloit College Emily Lindland, Florida Gulf Coast University LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION MICHAEL SAVARESE, Florida Gulf Coast University LENORE P. TEDESCO, Indiana/Purdue University at Indianapolis CAROL MANKIEWICZ, Beloit College LORA SHRAKE, TA, Indiana/Purdue University at Indianapolis PROJECT OVERVIEW complicating environmental management are the needs of many federally and state-listed Southwest Florida encompasses one of the endangered species, including the Florida fastest growing regions in the United States. panther and West Indian manatee. Watershed The two southwestern coastal counties, Collier management must also consider these issues and Lee Counties, commonly make it among of environmental health and conservation. the 5 fastest growing population centers on nation- and statewide censuses. -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
Stream Restoration, a Natural Channel Design
Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state. -
Rivers and Base Level—Cool Stuff Earth Science Essentials by Russ Colson
Stories of Other Worlds—How to Build a Landscape Rivers and Base Level—Cool Stuff Earth Science Essentials by Russ Colson The River—The state boundary that moves. The migration of rivers has a long and complex history in human politics and war. The problem arises because rivers were commonly used to mark boundaries of adjacent political entities. When the rivers inevitably migrated, as mature streams are wont to do, disagreements arose about who owned the new land formed on the inside bend of the meanders. It seems like a simple solution would be to keep the boundaries fixed, whether the river migrates or not. That way, the land controlled by a particular political entity is not changed by the vagaries of erosion and deposition. However, suppose that the river is an important defensive barrier against attack? Clearly, in that case the border needs to be maintained along the river. Or, what if the river is important for commerce and transportation? Again, keeping the border along the river makes sense, regardless of the gain or loss of land. In his 1715 (edition) book Of the Rights of War and Peace, Hugo Grotius took the view that many rivers are defensive boundaries and ...the river, by gradually altering its course, does also alter the borders of the territory; and whatsoever the river casts up to the opposite side, shall be under his jurisdiction, to whom the augmentation is made Although geologists treat the various processes of river migration (such as erosion, deposition, meander cut offs, etc) as part of a single process, courts have often ruled that they are quite different. -
Scour and Fill in Ephemeral Streams
SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley , , " W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 91125 Report No. KH-R-33 November 1975 SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley Project Supervisors: Robert P. Sharp Professor of Geology and Vito A. Vanoni Professor of Hydraulics Technical Report to: U. S. Army Research Office, Research Triangle Park, N. C. (under Grant No. DAHC04-74-G-0189) and National Science Foundation (under Grant No. GK3l802) Contribution No. 2695 of the Division of Geological and Planetary Sciences, California Institute of Technology W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science California Institute of Technology Pasadena, California 91125 Report No. KH-R-33 November 1975 ACKNOWLEDGMENTS The writer would like to express his deep appreciation to his advisor, Dr. Robert P. Sharp, for suggesting this project and providing patient guidance, encouragement, support, and kind criticism during its execution. Similar appreciation is due Dr. Vito A. Vanoni for his guidance and suggestions, and for generously sharing his great experience with sediment transport problems and laboratory experiments. Drs. Norman H. Brooks and C. Hewitt Dix read the first draft of this report, and their helpful comments are appreciated. Mr. Elton F. Daly was instrumental in the design of the laboratory apparatus and the success of the laboratory experiments. Valuable assistance in the field was given by Mrs. Katherine E. Foley and Mr. Charles D. Wasserburg. Laboratory experiments were conducted with the assistance of Ms.