Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web

Total Page:16

File Type:pdf, Size:1020Kb

Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web Frozen Desert Alive The role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web Hauke Flores FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 0',2#" 7-,1#,--'#, T4TQ""# "*#!20-,'!4#01'-,4'* *#2S &22.S 555T03%T,* ' *'-2&##) !2*-%' #12,"#, #*#).3 03% "'11#022'#1 ',"#6 %&'(S[YZV[RVXVXVVUU[VT 1%23&4(%5"1&%"%617(%(6"( FrozenDesertAlive &#0-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 17"8&9:1%8 2#04#0)0'(%',%4,&#2"-!2-02',"# <'1)3,"##,(23305#2#,1!&..#, ,"#1'()13,'4#01'2#'260-,',%#, -.%#8%4,"# 1#!2-0>%,'$'!31Q"0T8T?5021Q ',&#2-.#, 02#4#0"#"'%#,-. 40'("%S+#'TRR[ -+SUTSW330 "--0 HaukeFlores %# -0#,-.SZ1#.2#+ #0S[YV 2#'0#+#0&4#, 0-+-2-0 S0-$T"0T<T2T<-*$$ 9-.0-+-2-0 SB0T2TT4,80,#)#0 '#--0"#*',%1!-++'11'# S0-$T"0T'0T:T2T<T"#'0 S0-$T"0T4T5T'2&+,, S0-$T"0T8TT>T5-*!)#02 %,+#+-07-$+7%0,"+-2&#0 %,6#"#,)#,,+#',#60-!+322#0 6'1#*8*-0#1 TV&#.TS[TSVTX2,TTRRZ Contents ",%*'1&13++07 Z B32!&13++07 SS 6#0+,13++07 SV 9&.2#0S 6#,#0*%,20-"3!2'-, S[ 9&.2#0T B'#2-$25-'!#$'1&1.#!'#1$0-+2&#&-32&&&#2*," U[ %1*,"1,""*#.&,2%1*,"1QChampsocephalusgunnari ,"Chaenocephalusaceratus',TRRSTRRU PolarBiology27(2004)119R129 9&.2#0U ",#0%7!-,2#,2-$,20!2'!+#1-.#*%'!$'1&#1S XS '+.*'!2'-,1$-02&#+0',#$--"5# PolarBiology29(2006)10451051 9&.2#0V B'120' 32'-,Q 3,",!#,"#!-*-%'!*0#*#4,!#-$ YU .#*%'!$'1&#1',2&#80#4&#Q&-32&#0,7!#, MarineEcologyProgressSeries367(2008)271282 9&.2#0W B#,1'27-$.!)V'!#1#*1,".#,%3',1',2&#5#12#0, [U <#""#**&#',0#*2'-,2-'!#2&'!),#11,"-!#,"#.2& DeepSeaResearchII55(2008)1068–1074 9&.2#0X &7+.%'!-!!300#,!#-$"31'0'","71',11-'" SRW +.&'.-"13,"#0,20!2'!.!)'!# DeepSeaResearchII55(2008)1015–1023 9&.2#0Y ".'.#*%'!+!0-$3,3,"#01#'!#,"',-.#,52#01 STS -$2&#80#4&#Q&-32&#0,7!#, 9&.2#0Z ,20!2'!)0'**1.#!'#190312!#S"3.&31''"#3,"#0 SWW 1#'!#,"',2&#-.#,130$!#*7#0 9&.2#0[ &#&30$!#,"4,"#0V%!#05*&4% SZS 9&.2#0SR &7,2&#1'1S4,2,%*',%2&#,20!2'!1#'!#$--"5# SZ[ 1#$#0#,!#1 TRX !),-5*#"%#+#,21 TUU 9-,20' 32',%32&-01 TUY Englishsummary %, 2&# -!#, 0-3," ,20!2'!Q , 0# 25'!# 1 *0%# 1 "30-.# '1 .#0'-"'!**7 !-4#0#" 7 1# '!# #!& 7#0T &'1 0# '1 ),-5, 1 2&# ,20!2'! &#1-,* &# %!# ?-,# &%?T :3+,1 -$2#, .#0!#'4# 2&# .!)V'!# 1 ^$0-8#, "#1#02_T %, 1.'2# -$ '21 &01&,#11Q &-5#4#0Q 2&# ,20!2'! &%? $#230#1 0#+0) *# '-"'4#01'27 ," &-121 %*- **7 1'%,'$'!,2 '-*-%'!* 0#1-30!#1Q 13!& 1 2&# 1&0'+.V*')# ,20!2'! )0'** Euphausia superbaT0%#.-.3*2'-,1-$.#,%3',1Q-2&#0 '0"1Q1#*1,"5&*#1 17+ -*'8# 2&# '-*-%'!* 0'!&,#11 -$ 2&# &%? #!-1712#+T >,7 -$ 2&#1# ,'+*1 0# 3,'/3#2-2&#,20!2'!7!#,Q,"113!&&4#&'%&!-,1#042'-,12231T-"7Q"3# 2-%*- *50+',%2&#"'120' 32'-,-$1#'!#'1 #%',,',%2-*2#0',1-+#,20!2'! 0#%'-,1T%2'12&#0#$-0#'+.#02'4#2-3,"#012,"2&##!-*-%'!*1'%,'$'!,!#-$1#'!# ',-0"#02- #22#0.0#"'!2$3230#!&,%#1-$,20!2'!+0',##!-1712#+1T&'12&#1'1 !-+.'*#1 #'%&2 123"'#1 $-!31',% -, 2&# $--" 5# 1203!230#Q 2&# 1.#!'#1 !-+.-1'2'-, ,"2&#1.2'*"'120' 32'-,-$-0%,'1+1',2&#,20!2'!&%?T&.#!'*22#,2'-,'1.'" 2-2&#0-*#-$2&#'!#V52#0',2#0$!#*7#0$-0-0%,'1+12&2!,20,1$#0 '-+11," #,#0%7 $0-+ 2&# 1# '!# ',2- 2&# $--" !&',1 3*2'+2#*7 1312',',% 2&# '0"1 ," +++*1-$2&#&%?T &# '-+11 ', -$$1&-0# +0',# #!-1712#+1 '1 .0#"-+',,2*7 .0-"3!#" 7 +'!0-1!-.'! *%# 131.#,"#" ', 2&# 52#0 .&72-.*,)2-,T %, +0',# $--" !&',1Q .&72-.*,)2-,'1$#"-, 71+**,'+*18--.*,)2-,2&2',230,0##2#, 7$'1& -0 1/3'"Q 5&'!& 0# 2&# .0#7 -$ '0"1 ," +++*1 -0 *0%#0 $'1&T %, 2&# ,20!2'! 7!#,Q,20!2'!)0'**!,0#.*!#2&#313*8--.*,)2-,$'1& 1/3'"12#.-$2&#$--" !&',1T%,2&#&-32&&&#2*,"%1*,"1Q&'%&1&0#-$,20!2'!)0'**',2&#$--"5# 51 ..0#,2 $0-+ 123"7 -, 2&# $##"',% #!-*-%7 -$ +!)#0#* '!#$'1& Champsocephalusgunnari,"&!-2'&#'!#$'1&ChaenocephalusaceratusT&#"'#2 -$ 2&# +!)#0#* '!#$'1& !-,1'12#" *+-12 #6!*31'4#*7 -$ ,20!2'! )0'** ', 2&0## !-,1#!32'4#13++#01T234#,'*#&!-2'&#'!#$'1&*1-$#".0#"-+',,2*7-,)0'**T&#'0 -*"#0!-,%#,#01Q&-5#4#0Q!*#0*7.0#$#00#"$'1&Chapter2T &#&-32&&&#2*,"%1*,"1 #*-,%2-&'%&*7.0-"3!2'4#0#%'-,',2&#4'!','27-$2&# ,20!2'!#,',13*5&#0#,20!2'!)0'**'1!-,!#,202#" 72&#.0#4'*',%!300#,21T '1#"-,',4#12'%2'-,1!-,"3!2#"',2&'10#%'-,Q'2&1%#,#0**7 ##,113+#"2&2 ,20!2'! )0'** '1 2&# )#7 #,#0%7 20,1+'22#0 -$ 2&# ,20!2'! +0',# $--" 5# T &'1 113+.2'-,Q&-5#4#0Q"-#1,-2%0##5'2&,',!0#1',%,3+ #0-$"'#2',4#12'%2'-,1 $',"',%2&2$'1&,"1/3'""-+',2#2&#$--"-$ '0"1,"+++*1T&#0-*#-$ -0%,'1+1 ', 2&# $--" 5# "#.#,"1 +3!& -, 2&#'0 ,320'2'-,* 4*3#T &#0#$-0#Q 2&# #,#0%7 !-,2#,2 -$ 2&0## 3,",2 $'1&#1 $0-+ 2&# 80#4 &# 51 ',4#12'%2#" ', Chapter 3T %2 51 1&-5, 2&2 ',"'4'"3*1 -$ 2&# *,2#0,$'1& Electrona antarctica /3'!)*7 3'*" 3. &'%& #,#0%7 0#1#04#1 "30',% 2&#'0 $'012 7#0T &# 4#0%# #,#0%7 !-,2#,2-$2&#*,2#0,$'1&51+-0#2&,25'!#1&'%&12&2-$,20!2'!)0'**T Z Englishsummary &.#!'+#,1 $-0 #,#0%7 +#130#+#,21 5#0# 1+.*#" "30',% 123"7 -, 2&# 1.#!'#1 !-+.-1'2'-,Q"'120' 32'-,," 3,",!#-$$'1&#1,"2&#'0*04#',2&#3..#0TRR+ -$2&#80#4&#Chapter4TElectronaantarctica51!*#0*72&#+-12 3,",2 1.#!'#1',"##.52#01T&#+-12'+.-02,2"'#2'2#+1-$2&#*,2#0,$'1&5#0#1+** !0312!#,1-2&#02&,)0'**T%251!*!3*2#"2&2Electronaantarctica"5#**',%',2&# 3..#0TRR+0#.0#1#,2+-0#2&,-,#V2&'0"-$2&##,#0%7 -3,"',2&#.-.3*2'-,-$ ,20!2'!)0'**',2&#80#4&#T&',!#*0%#.021-$2&#*,2#0,$'1&.-.3*2'-,0# 313**7"'120' 32#" #*-5TRR+Q'2!, #113+#"2&22&#+-3,2-$#,#0%7 -3," ',2&#2-2*12-!)-$Electronaantarctica51.-11' *71'+'*02-2&2-$,20!2'!)0'**T &3!&&'%&!-,20' 32'-,-$$'1&2-2&##,#0%7&-31#&-*"-$2&##!-1712#+!&**#,%#12&# !*11'!)0'**V!#,2#0#"!-,!#.2-$2&#,20!2'!+0',#$--"5# T &# %0-52& -$ *%# "#.#,"1 -, 2&# 4'* '*'27 -$ *'%&2T '#!31# .&72-.*,)2-, '1 -$2#,+'6#"',2-"##.#052#0*7#01Q'2!,&0"*7%0-52**5&#,2&#4'* *#*'%&2 '1""'2'-,**7"'++#" 7.!)V'!#!,-.7T:-5#4#0Q&'%&$--""#+,"-$ '0"1 ,"+++*1.#01'121',.!)V'!#0#1#4#,&3,"0#"1-$)'*-+#20#157$0-+-.#, 52#0Q ',"'!2',% 13 12,2'* '-*-%'!* .0-"3!2'-, ', 2&# '!#T %, !-,2012 2- .&72-.*,)2-,Q+'!0-*%#%0-5',%22&#3,"#01'"#-$'!#$*-#1*571127,#02&# 5#**V*'2130$!#T&# '-+11,"#,#0%7.0-"3!#" 72&#1#'!#*%#!, #.11#"-, 2&0-3%&2&#$--"!&',1Q3*2'+2#*7$##"',%**,'+*1-$2&#&%?T&#.#0!#.2'-,2&2 2&# 1# '!# 0# !, 1312', !-,1'"#0 *# 3,",!#1 -$ '0"1 ," +++*1 51 13..-02#" 7 2&# 0#13*21 -$ .#,%3', ," 1#* !#,131 !-,"3!2#" ', 2&# 1#*"-+ ',4#12'%2#".!)V'!#-$2&#',,#0<#""#**&#Chapter5T&# 3,",!#-$1#*1 ,".#,%3',1',2&#"#,1#.!)V'!#511'+'*02-5&2'1),-5,$0-+,-02&#0*7Q+-0# -.#,52#01T&#+-12 3,",21.#!'#1512&#!0 #2#01#*Lobodon carcinophagaT%,,-4#*..0-!&Q!#,131"2-$2&'11.#!'#15#0#!-+ ',#"5'2& '!#2&'!),#11+#130#+#,21!-**#!2#"',.0**#*T&#122'12'!*,*71'1-$2&#1#"2 ',"'!2#" 2&2 2&# "'120' 32'-, -$ !0 #2#0 1#*1 51 1'%,'$'!,2*7 0#*2#" 2- -!#, "#.2& ," '!# 2&'!),#11T &'1 - 1#042'-, #6#+.*'$'#1 2&# ',$*3#,!# -$ 1# '!# !&0!2#0'12'!1-,2&#"'120' 32'-,-$,'+*1T %$2&#,20!2'!&%?#!-1712#+"#.#,"1*0%#*7-,1#'!#.0-"3!2'-,Q2&# '-*-%'!* 0#1-30!#1-$2&#'!#+312 #20,1$#00#"',2-2&#$--"5# -$2&#52#0!-*3+,22&# '!#V52#0 ',2#0$!#T &# 3,"#01'"# -$ '!# $*-#1Q &-5#4#0Q '1 ',!!#11' *# $-0 !-,4#,2'-,* ,#2V 1#" ," &7"0-V!-312'! 1+.*',% 2#!&,'/3#1T ,-4#* 3,"#0V'!# 1+.*',% "#4'!# 51 2&#0#$-0# "#4#*-.#" 2 <%#,',%#, %>1"&Q 2&# Surface and UnderIceTrawl&4%T%,,20!2'!!-12*52#01Q1#4#0*!0312!#,1-$2&#-0"#0 +.&'.-" *'4# ', !*-1# 11-!'2'-, 5'2& 2&# 3,"#0130$!# -$ '!#T B30',% 123"7 !-,"3!2#" +-12*7 ', -$$1&-0# 0#1 -$ 2&# <#""#** &# ," 2&# 80#4 &#Q +.&'.-"15#0#!-**#!2#" 7+#,1-$ '2#"20.1Q 7&94'"'4',%,"5'2&&4% Chapter6T&#1'61.#!'#1$-3,"22&#3,"#01'"#-$'!#$*-#10#$'012#4'"#,!#-$, '!#V11-!'2#"+-"#-$*'$#$0-++.&'.-"1*'4',%',,20!2'!"##.52#01T +3*2'V1#1-,* &4% 123"7 .0-4'"#" 2&# $'012 /3,2'22'4# !!-3,2 -$ 3,"#0V'!# 1.#!'#1 !-+.-1'2'-, 2 *0%# 1.2'* 1!*# Chapter 7T,3,#6.#!2#"*7*0%# [ Englishsummary ,3+ #0-$1.#!'#15#0#!-**#!2#"',2&#25-V+#20#130$!#*7#0Q -2&',-.#,52#0 ,"3,"#0'!#T%,,,*71'131',%+3*2'.*##,4'0-,+#,2*.0+#2#01'2511&-5, 2&2Q,#622-$#5-2&#0$!2-01Q2&#1.#!'#1!-+.-1'2'-,1'%,'$'!,2*70#1.-,"#"2-1# '!#.0-.#02'#1',323+,,"13++#0T&#0#13*21-$2&'1123"7',"'!2#"2&22&#'!#V 52#0 ',2#0$!# *7#0 220!21 130.0'1',% "'4#01'27 -$ 1.#!'#1Q ',"'!2',% ',2#,1# '-*-%'!*',2#0!2'-, #25##,'!#V11-!'2#"*'$#,"2&#$--"5# -$2&#3,"#0*7',% 52#0!-*3+,T Chapter80#.0#1#,212&#$'0120#!-0"-$2&#"'120' 32'-,," 3,",!#-$,20!2'! )0'** ', 2&# 25-V+#20# 130$!# *7#0 -2& 3,"#0 '!# ," ', -.#, 52#0 "30',% 2&0## "'$$#0#,21#1-,1T&#4#0%# 3,",!#-$,20!2'!)0'**',2&#3..#025-+#20#11 #12'+2#" 7&4%51&'%&#123,"#0'!#',5',2#0,"*-5#12',2&#*0%#*7'!#V$0## 323+,T%,13++#0Q)0'**51+-0# 3,",2',2&#130$!#*7#03,"#0'!#2&,', -.#, 52#0T 9-+.0'1-, 5'2& "2 $0-+ !-,!300#,2*7 "#.*-7#" +'"52#0 ,#21 "#+-,1202#"2&22&#4#0%#.#0V+T 3,",!#-$,20!2'!)0'**51&'%&#0',2&# 25- +#20#1 3,"#0 2&# '!# 2&, ', 2&# #,2'0# RVTRR + "#.2& 0,%# ', 5',2#0 ," 13++#0T&#1#0#13*21',"'!2#2&22&# '-*-%'!*!.!'27-$'!#V!-4#0#"52#01!, #+3!&&'%&#02&,#12'+2#" 72&#313**7..*'#"+'"52#01+.*',%31',%,#21 -0 1-,0T >-0# '+.-02,2*7Q 2&# &'%& 0#*#4,!# -$ 2&# '!# & '22 "#+-,1202#" $-0 ,20!2'! )0'** ," -2&#0 1.#!'#1 &'%&*'%&21 2&# 43*,#0 '*'27 -$ 2&# ,20!2'! &%? #!-1712#+2-!&,%#1',2&#1203!230#,"2&#1.2'*,"2#+.-0*#62#,2-$1#'!#T &#1#123"'#1"#+-,1202#"2&#4*3#-$2&#,#5*7"#4#*-.#"&4%$-0.0-4'"',%,#5 ',1'%&21 ', 2&# 1203!230# -$ 2&# &%? #!-1712#+ 2&2 !-3*" ,-2 # - 2',#" 5'2& !-,4#,2'-,*2#!&,-*-%7T%,Chapter9Q2&# '*'27-$&4%2-1+.*#8--.*,)2-,Q$'1& ," 1/3'" ', 0#.0#1#,22'4# +,,#0 51 ',4#12'%2#" 1#" -, 0#*V2'+# !300#,2 +#130#+#,21',2&#,#2-.#,',%Q2&#1.#!'#1!-+.-1'2'-,,"2&#1'8#"'120' 32'-,-$ &4% !2!&#1T &# +#130#+#,21 ',"'!2#" 12#"7 $*-5 ',2- 2&# ,#2 **-5',% 12,"0"'8#" 3,",!# #12'+2#1T &4% !2!&#1 !-+.0'1#" 1.#!'#1 0,%',% ', 1'8# $0-+!0312!#,11+**#02&,S++2-$3**7%0-5,$'1&,"1/3'"T&#1'8# "'120' 32'-,-$,20!2'!)0'**51*+-12'"#,2'!*2-2&2$0-++'"52#0205*131',% 1'+'*0+#1&1'8#T*2&-3%&1-+#"3*2$'1&#1,"1/3'"+7 # *#2-4-'"2&#,#2Q &4%!, #113+#"2- #0#*' *#/3,2'22'4#1+.*',%"#4'!#2*#123.2-2&#
Recommended publications
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
    15 NOVEMBER 2020 S T R A S S E T A L . 9863 Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica VOLKER H. STRASS,GERD ROHARDT,TORSTEN KANZOW,MARIO HOPPEMA, AND OLAF BOEBEL Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany (Manuscript received 16 April 2020, in final form 10 August 2020) ABSTRACT: The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an ap- proximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC).
    [Show full text]
  • Review: the Energetic Value of Zooplankton and Nekton Species of the Southern Ocean
    Marine Biology (2018) 165:129 https://doi.org/10.1007/s00227-018-3386-z REVIEW, CONCEPT, AND SYNTHESIS Review: the energetic value of zooplankton and nekton species of the Southern Ocean Fokje L. Schaafsma1 · Yves Cherel2 · Hauke Flores3 · Jan Andries van Franeker1 · Mary‑Anne Lea4 · Ben Raymond5,4,6 · Anton P. van de Putte7 Received: 8 March 2018 / Accepted: 5 July 2018 / Published online: 18 July 2018 © The Author(s) 2018 Abstract Understanding the energy fux through food webs is important for estimating the capacity of marine ecosystems to support stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, energy densities were highest in myctophid fshes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fsh families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly fsh (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals diferences in energy density within and between species related to size, age and other life cycle parameters. Important taxa in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled.
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October - December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2014 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October – December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2014 Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M.O. Krichak (RAE), Section 2 Ye.I. Aleksandrov (Department of Sea-Air Interaction) Section 3 G.Ye. Ryabkov (Department of Ice Regime and Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Sea-Air Interaction) Section 6 I.V. Moskvin, Yu.G. Turbin (Department of Geophysics) Section 7 V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2. METEOROLOGICAL CONDITIONS IN OCTOBER-DECEMBER 2013 42 3.
    [Show full text]
  • Microzooplankton Herbivory in the Ross Sea, Antarctica David A
    Deep-Sea Research II 47 (2000) 3249}3272 Microzooplankton herbivory in the Ross Sea, Antarctica David A. Caron! * , Mark R. Dennett!, Darcy J. Lonsdale", Dawn M. Moran!, Ludmilla Shalapyonok! !Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA "Marine Sciences Research Center, State University of New York, Stony Brook, NY 11794-5000, USA Received 1 June 1999; received in revised form 15 September 1999; accepted 1 October 1999 Abstract Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.}Nov. 1996; mid-late summer, Jan.}Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.}Dec. 1997). Rates of microzooplankton herbivory were measured using a modi"ed dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insu$cient to impact signi"cantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplank- ton mortality rates that were signi"cantly di!erent from zero. The highest mortality rate observed in this study (0.26 d\) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Marine Ecosystems and Global Change
    IInternationalnternational GGeosphere-Biosphereeosphere-Biosphere PProgrammerogramme IGBP Science No. 5 MMarinearine EEcosystemscosystems aandnd GGloballobal CChangehange Global Ocean Ecosystem Dynamics Why GLOBEC? The Global Ocean Ecosystem Dynamics Project (GLOBEC) was adopted in 1995 by the International Geosphere-Biosphere Pro- gramme as a new Project, with co-sponsorship from the Scientifi c Committee on Oceanic Research (SCOR) and the Intergovernme- ntal Oceanographic Commission of UNESCO (IOC). Its goal is to “advance our understanding of the structure and functioning of the global ocean ecosystem, and its response to physical forcing, so that a capability can be developed to forecast the responses of the marine ecosystem to global change.” GLOBEC considers global change in the broad sense, encompass- ing the gradual processes of climate change and its impacts on marine systems, as well as those shorter-term changes resulting from anthropogenic pressures, such as population growth in coastal areas, increased pollution, overfi shing, changing fi shing practices and changing human use of the seas. GLOBEC has four detailed scientifi c objectives: 1. To better understand how multi-scale physical environmental processes force large-scale changes in marine ecosystems. 2. To determine the relationship between structure and dyna- mics in a variety of oceanic systems which typify signifi cant components of the global ocean ecosystem, with emphasis on individuals and populations of key species and trophodynamic pathways. 3. To determine the impacts of global change on stock dynamics using coupled physical, biological and chemical models linked to appropriate observation systems, and to develop the capa- bility to predict future impacts. 4. To determine how changing marine ecosystems will affect the Earth System by identifying and quantifying feedback mecha- nisms.
    [Show full text]
  • Recent Reoccurrence of Large Open-Ocean Polynya on the Maud
    RESEARCH LETTER Recent Reoccurrence of Large Open‐Ocean Polynya 10.1029/2018GL081482 on the Maud Rise Seamount Key Points: B. Jena1 , M. Ravichandran1 , and J. Turner2 • The largest and most prolonged Maud Rise polynya since the1970s 1ESSO‐National Centre for Polar and Ocean Research, Ministry of Earth Science, Government of India, Vasco‐da‐Gama, appeared on 14 September 2017 with 2 an areal extent of ~9.3 × 103 km2 India, British Antarctic Survey, Natural Environment Research Council, Cambridge, UK • Record negative anomalies of sea‐ice concentration occurred and the polynya expanded up to Abstract Satellite observations have shown that the largest and most prolonged Maud Rise open‐ocean 3 2 ~298.1 × 10 km and existed for polynya since the 1970s appeared on 14 September 2017 (~9.3 × 103 km2) within the seasonal sea‐ice cover 79 days 3 2 • The polynya was associated with a which expanded maximum on 1 December 2017 (~298.1 × 10 km ) and existed for 79 days. Record large cyclonic ocean eddy, negative negative anomalies of sea‐ice concentration were observed in and around the polynya. The occurrence of the wind stress curl, and anomalous polynya was associated with a large cyclonic eddy and negative wind stress curl that facilitated melting of atmospheric circulation sea‐ice. Concurrently, a region of positive sea level pressure anomalies extended over the entire northern Supporting Information: Weddell Sea accompanied by record low negative anomalies (deep depressions) over the southwest Weddell • Supporting Information S1 Sea and the Maud Rise. The atmospheric circulation anomalies advected moist‐warm air from the midlatitudes, resulted a record atmospheric warming (~11.5 °C) in the Maud Rise that favored this rare event as one of the largest open‐ocean polynyas.
    [Show full text]
  • Swimbladders in Mesopelagic Fishes Bibliography
    Swimbladders in Mesopelagic Fishes Bibliography Hope Shinn, Librarian, LAC Group on assignment at NOAA Central Library NCRL subject guide 2021-06 DOI: 10.25923/a1p9-zh44 June 2021 U.S. Department of Commerce National Oceanic and Atmospheric Administration Office of Oceanic and Atmospheric Research NOAA Central Library – Silver Spring, Maryland Table of Contents Background & Scope ................................................................................................................................. 2 Sources Reviewed ..................................................................................................................................... 2 References ................................................................................................................................................ 3 1 Background & Scope This bibliography is a representative sample of relevant literature on swimbladders in mesopelagic fish and their acoustic properties. References included in this bibliography are mainly from peer-reviewed, academic literature and span the years 1954-2021. The references are listed alphabetically by first author. Sources Reviewed The following databases were used to identify sources: Clarivate Analytics’ Web of Science: Science Citation Index Expanded and Social Science Index; EconLit; ProQuest’s Science and Technology including Aquatic Science Fisheries Abstracts; Elsevier’s Science Direct; JSTOR; EBSCO’s Academic Search Complete and Environment Complete; NOAA’s Institutional Repository; the Biodiversity
    [Show full text]
  • Circulation and Transport of Water Masses in the Lazarev Sea, Antarctica, During Summer and Winter 2006
    Deep-Sea Research I 58 (2011) 186–199 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006 Boris Cisewski a,b,n, Volker H. Strass a, Harry Leach c a Alfred-Wegener-Institut fur¨ Polar- und Meeresforschung, P.O. Box 120161, 27515 Bremerhaven, Germany b Institut fur¨ Umweltphysik, Abteilung Ozeanographie, Universitat¨ Bremen, P.O. Box 330440, 28334 Bremen, Germany c Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, UK article info abstract Article history: The distribution and circulation of water masses in the region between 61W and 31E and between the Received 6 July 2010 Antarctic continental shelf and 601S are analyzed using hydrographic and shipboard acoustic Doppler Received in revised form current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both 20 November 2010 seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter Accepted 2 December 2010 the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then Available online 5 December 2010 southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of Keywords: about 20 cm sÀ1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic Weddell Gyre continental shelf slope and is associated with maximum velocities of about 25 cm sÀ1. Lazarev Sea Along two meridional sections that run close to the top of Maud Rise along 31E, geostrophic velocity Geostrophy shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP Circulation 7 À1 Transports in the upper 300 m.
    [Show full text]
  • Earth's Cryosphere: Past, Present and Future
    International Conference Earth's Cryosphere: Past, Present and Future Pushchino, Russia, June 4-8, 2017 ISBN 978-5-600-01788-7 УДК 551.34; 624.139; 624.131.1; 551.32; 612.821; 591.51; 550.47; 579 Pushchino Permafrost Conference «Earth's Cryosphere: Past, Present and Future» organized by: Federal Agency for Scientific Organizations, Russian Foundation for Basic Research, Institute of Physicochemical and Biological Problems in Soil Science RAS, OOO “Bioarsenal” Conference Organizing Committees Chair: Andrey Alekseev (Corresponding member of RAS, Director of IPCBPSS RAS) Chair of the Scientific Committee: Elizaveta Rivkina (Head of Soil Cryology Laboratory, IPCBPSS RAS) Chair of the local Organizing Committee: Andrey Abramov (Soil Cryology Laboratory, IPCBPSS RAS) Local Committee: Svetlana Chudinova, Elena Spirina, Dmitry Fedorov- Davydov, Alexey Lupachev, Victor Sorokovikov Technical group: A.Veremeeva, A.Shatilovich, O.Zanina, L.Pasnitskaya, L.Gulyaeva, L.Kondakova, E.Sokolova, S.Malavin, A.Komolova Sponsors OOO “Northern survey” (Moscow) Beta Analytics Inc. (USA) PYRN-Russia 2 TABLE OF CONTENTS Conference program 5 Abstracts Session 1: Past, Present and Future state of cryosphere 19 Session 2: Infrastructure management: engineering and processes 59 Session 3: Life in permafrost 77 Session 4: Physico-chemical problems of frozen ground 85 Session 5: Fate of water in subzero areas 92 Poster session 100 Session 6: “Makeev readings” - Permafrost affected soils: formation and function 144 Author index 166 3 PROGRAM of the International Conference
    [Show full text]