Organic Compounds and Suspended Particulate Matter in Snow of High Latitude Areas (Arctic and Antarctic)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sc Annex 7 Cover
ANNEX 7 REPORT OF THE JOINT MEETING OF THE WORKING GROUP ON KRILL AND THE WORKING GROUP FOR THE CCAMLR ECOSYSTEM MONITORING PROGRAM (Cape Town, South Africa, 27 July to 2 August 1994) TABLE OF CONTENTS INTRODUCTION MEETING OBJECTIVES PREY MONITORING Data Collection Procedures Review of Available Data Krill Biomass Estimates in the Integrated Study Regions (ISRs) Fine-scale Catch Data Fine-scale Surveys PREDATOR MONITORING ECOSYSTEM INTERACTIONS Distribution of Krill Fishing and Predators Potential Effect of Precautionary Measures Krill/Predator Functional Relationships ECOSYSTEM ASSESSMENT Development of Prey, Fishery and Environmental Indices Integrating Predator, Prey, Environmental and Fishery Indices into Ecosystem Assessments CEMP Experimental Approaches (Experimental Fishing Regimes) Incorporating Ecosystem Assessments into Management Advice ORGANISATION OF FUTURE WORK Advice on the Re-organisation of the Scientific Committee’s Working Groups List of Priority Activities Terms of Reference of a New Working Group on Ecosystem Monitoring and Management (WG-EMM) OTHER BUSINESS Future Cooperative Research ADOPTION OF THE REPORT CLOSE OF THE MEETING TABLES APPENDIX A: Agenda APPENDIX B: List of Participants APPENDIX C: List of Documents 1 REPORT OF THE JOINT MEETING OF THE WORKING GROUP ON KRILL AND THE WORKING GROUP FOR THE CCAMLR ECOSYSTEM MONITORING PROGRAM (Cape Town, South Africa, 27 July to 2 August 1994) INTRODUCTION 1.1 The second Joint Meeting of the Working Group on Krill (WG-Krill) and the Working Group for the CCAMLR Ecosystem Monitoring Program (WG-CEMP) was held at the Breakwater Lodge, Cape Town, South Africa, between 27 July and 2 August 1994, and was chaired by the Chairman of the Scientific Committee, Dr K.-H. -
Data Structure
Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference. -
Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole. -
Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
15 NOVEMBER 2020 S T R A S S E T A L . 9863 Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica VOLKER H. STRASS,GERD ROHARDT,TORSTEN KANZOW,MARIO HOPPEMA, AND OLAF BOEBEL Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany (Manuscript received 16 April 2020, in final form 10 August 2020) ABSTRACT: The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an ap- proximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC). -
Arctic and Antarctic Research Institute” Russian Antarctic Expedition
FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October - December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2014 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October – December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2014 Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M.O. Krichak (RAE), Section 2 Ye.I. Aleksandrov (Department of Sea-Air Interaction) Section 3 G.Ye. Ryabkov (Department of Ice Regime and Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Sea-Air Interaction) Section 6 I.V. Moskvin, Yu.G. Turbin (Department of Geophysics) Section 7 V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2. METEOROLOGICAL CONDITIONS IN OCTOBER-DECEMBER 2013 42 3. -
Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web
Frozen Desert Alive The role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web Hauke Flores FrozenDesertAlive �-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 0',2#" 7-,1#,--'#, T4TQ""# "*#!20-,'!4#01'-,4'* *#2S &22.S 555T03%T,* ' *'-2&##) !2*-%' #12,"#, #*#).3 03% "'11#022'#1 ',"#6 %&'(S[YZV[RVXVXVVUU[VT 1%23&4(%5"1&%"%617(%(6"( FrozenDesertAlive �-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 17"8&9:1%8 2#04#0)0'(%',%4,"-!2-02',"# <'1)3,"##,(23305#2#,1!&..#, ,"#1'()13,'4#01'2#'260-,',%#, -.%#8%4,"# 1#!2-0>%,'$'!31Q"0T8T?5021Q ',-.#, 02#4#0"#"'%#,-. 40'("%S+#'TRR[ -+SUTSW330 "--0 HaukeFlores %# -0#,-.SZ1#.2#+ #0S[YV 2#'0#+#0&4#, 0-+-2-0 S0-$T"0T<T2T<-*$$ 9-.0-+-2-0 SB0T2TT4,80,#)#0 '#--0"#*',%1!-++'11'# S0-$T"0T'0T:T2T<T"#'0 S0-$T"0T4T5T'2&+,, S0-$T"0T8TT>T5-*!)#02 %,+#+-07-$+7%0,"+-2� %,6#"#,)#,,+#',#60-!+322#0 6'1#*8*-0#1 TV&#.TS[TSVTX2,TTRRZ Contents ",%*'1&13++07 Z B32!&13++07 SS 6#0+,13++07 SV 9&.2#0S 6#,#0*%,20-"3!2'-, S[ 9&.2#0T B'#2-$25-'!#$'1&1.#!'#1$0-+2&#&-32&&*," U[ %1*,"1,""*#.&,2%1*,"1QChampsocephalusgunnari ,"Chaenocephalusaceratus',TRRSTRRU PolarBiology27(2004)119R129 9&.2#0U ",#0%7!-,2#,2-$,20!2'!+#1-.#*%'!$'1S XS '+.*'!2'-,1$-02&#+0',#$--"5# PolarBiology29(2006)10451051 9&.2#0V B'120' 32'-,Q 3,",!#,"#!-*-%'!*0#*#4,!#-$ YU .#*%'!$'1',2P#4&#Q&-32�,7!#, MarineEcologyProgressSeries367(2008)271282 9&.2#0W -
Microzooplankton Herbivory in the Ross Sea, Antarctica David A
Deep-Sea Research II 47 (2000) 3249}3272 Microzooplankton herbivory in the Ross Sea, Antarctica David A. Caron! * , Mark R. Dennett!, Darcy J. Lonsdale", Dawn M. Moran!, Ludmilla Shalapyonok! !Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA "Marine Sciences Research Center, State University of New York, Stony Brook, NY 11794-5000, USA Received 1 June 1999; received in revised form 15 September 1999; accepted 1 October 1999 Abstract Microplankton abundances and phytoplankton mortality rates were determined at six stations during four cruises spanning three seasons in the Ross Sea polynya, Antarctica (early spring, Oct.}Nov. 1996; mid-late summer, Jan.}Feb. 1997; fall, Apr. 1997; mid-late spring, Nov.}Dec. 1997). Rates of microzooplankton herbivory were measured using a modi"ed dilution technique, as well as by examining the rate of disappearance of phytoplankton (chlorophyll) in samples incubated in the dark (i.e. grazing in the absence of phytoplankton growth). Strong seasonal cycles of phytoplankton and microzooplankton abundance were observed during the study. Microzooplankton abundance varied by more than three orders of magnitude during the four cruises, and was positively correlated with phytoplankton biomass over the entire data set. Nevertheless, microzooplankton grazing was insu$cient to impact signi"cantly phytoplankton standing stocks during most of the experiments performed in this perenially cold environment. Only thirteen out of a total of 51 experiments yielded phytoplank- ton mortality rates that were signi"cantly di!erent from zero. The highest mortality rate observed in this study (0.26 d\) was modest compared with maximal rates that have been observed in temperate and tropical ecosystems. -
Author's Response Reviewer 1 We Thank the Reviewer for Their
Author’s Response Reviewer 1 We thank the Reviewer for their constructive comments regarding our manuscript. Our responses to specific comments are shown below in blue. This manuscript analyzed published transient simulations of the last deglaciation with a focus on regional conditions in Antarctic and Southern Ocean. The authors compared modeled temperature, accumulation rate and sea ice with available proxy estimates. Using model simulations, the authors also explored changes in variables and relationships that could impact ice-sheet mass balance. The manuscript is well-written. The topic may interest readers of Climate of the Past. But, I hope the following questions and comments will be addressed. Major comments: 1. In general, I feel the authors largely overlooked potential biases and uncertainty in proxy records, including the ice-core temperature and Alkenone- and Mg/Ca-based SSTs. Stable isotopes in ice cores reflect complicated signals in climate system, such as changes in seasonality (Jouzel et al., 2003; Erb et al., 2018), sea-ice content and changes in moisture source regions (Noone and Simmonds, 2004; Holloway et al., 2016), etc. Similarly, marine SST records are also subject to substantial uncertainties (for example, see Tierney and Tingley, (2018) for a discussion of alkenone-based SSTs). The authors should better consider and incorporate these biases and uncertainties in their model-data comparison and related discussion. I suggest the authors further explore possible seasonality biases in ice-core and marine sediment records by comparing modeled seasonal temperatures, in addition to annual mean, with proxy records. They can also test whether water isotopes in ice cores more reflect temperature at condensation level or surface air temperature. -
Notice of Vacancy Seconded National Experts to The
Form DG.1 (EN) NOTICE OF VACANCY SECONDED NATIONAL EXPERTS TO THE EUROPEAN COMMISSION Post identification: MARE-A-3 (DG-DIR-UNIT) Head of Unit: Christos Economou Email address: [email protected] Telephone: +32 2 29 66 310 Number of available posts: 1 Suggested taking up duty: 1st quarter 2020 1 Suggested initial duration: 1 year1 Place of secondment: Brussels Luxembourg Other: …………………... With allowances Cost-free This vacancy notice is also open to the following EFTA countries : Iceland Liechtenstein Norway Switzerland EFTA-EEA In-Kind agreement (Iceland, Liechtenstein, Norway) the following third countries: the following intergovernmental organisations: 1 Nature of the tasks: DG Maritime Affairs and Fisheries (DG MARE) aims to develop the potential of the European maritime economy and to secure sustainable fisheries, a stable supply of seafood, healthy seas and prosperous coastal communities – for today's Europeans and for future generations. This involves formulating, developing and implementing the Common Fisheries Policy – the cornerstone of our actions for a sustainable exploitation of fisheries resources; and promoting an integrated approach to all maritime policies. The DG has around 370 staff, distributed over 5 Directorates and 20 Units. The wide variety of responsibilities creates an interesting and challenging working environment. Hierarchical circuits are short, and working efforts translate into tangible results with a direct impact on the ground and on stakeholders. Unit A3 drives forward the maritime policy of the EU by fostering dialogue and cooperation on maritime issues and by developing initiatives in the European sea basins to help coastal communities and regions diversify and expand their economies. -
Report of Short Term Assignment DFID Contract Number: ESD/14 Comparative Analysis of OECD/DAC Guidance and Other Internationally
Report of Short Term Assignment DFID Contract Number: ESD/14 Comparative analysis of OECD/DAC Guidance and other internationally important SEA regimes August 30 2006 Purpose The purpose of this briefing note is to provide a short, factual comparison of the differences and similarities among SEA approaches promoted and adopted internationally with particular reference to the implications for the donor community. Introduction In June 2006, the OECD/ DAC published the Good Practice Guidance on Applying SEA in Development Cooperation for use by its members and partner countries. This guidance now serves as a commonly agreed framework for strengthening and harmonising the use of SEA in support of international development policies, plans and programmes, as called for in the Paris Declaration on Aid Effectiveness 2005. Currently, the guidance is being pilot tested by a number of multilateral and bilateral aid agencies as part of their ongoing activities. This process is designed to assist donor agencies to come to a better understanding of the ways that the Guidance can improve SEA application across a broad scope of development assistance activities. It also is expected to identify opportunities for coordination of their SEA procedures within partner countries, helping to implement a more coherent approach consistent with the harmonisation agenda agreed by the donor community. At the same time, the Guidance calls for donor agencies to take a flexible approach to SEA, adapting processes and tools to the particular context and issues encountered. This is a difficult challenge within the harmonisation agenda but not a contradictory one, since adaptation to purpose provides a convergence point for different processes. -
Articles and Detrital Matter
Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban, -
Marine Ecosystems and Global Change
IInternationalnternational GGeosphere-Biosphereeosphere-Biosphere PProgrammerogramme IGBP Science No. 5 MMarinearine EEcosystemscosystems aandnd GGloballobal CChangehange Global Ocean Ecosystem Dynamics Why GLOBEC? The Global Ocean Ecosystem Dynamics Project (GLOBEC) was adopted in 1995 by the International Geosphere-Biosphere Pro- gramme as a new Project, with co-sponsorship from the Scientifi c Committee on Oceanic Research (SCOR) and the Intergovernme- ntal Oceanographic Commission of UNESCO (IOC). Its goal is to “advance our understanding of the structure and functioning of the global ocean ecosystem, and its response to physical forcing, so that a capability can be developed to forecast the responses of the marine ecosystem to global change.” GLOBEC considers global change in the broad sense, encompass- ing the gradual processes of climate change and its impacts on marine systems, as well as those shorter-term changes resulting from anthropogenic pressures, such as population growth in coastal areas, increased pollution, overfi shing, changing fi shing practices and changing human use of the seas. GLOBEC has four detailed scientifi c objectives: 1. To better understand how multi-scale physical environmental processes force large-scale changes in marine ecosystems. 2. To determine the relationship between structure and dyna- mics in a variety of oceanic systems which typify signifi cant components of the global ocean ecosystem, with emphasis on individuals and populations of key species and trophodynamic pathways. 3. To determine the impacts of global change on stock dynamics using coupled physical, biological and chemical models linked to appropriate observation systems, and to develop the capa- bility to predict future impacts. 4. To determine how changing marine ecosystems will affect the Earth System by identifying and quantifying feedback mecha- nisms.