Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Manuscript Text Click Here to Download Manuscript LCDW-Sub-V4.4-Text.Docx Click Here to View Linked References 1 2 3 4 5 6 7
Manuscript text Click here to download Manuscript LCDW-sub-v4.4-text.docx Click here to view linked References 1 Modification of the Deep Salinity-Maximum in the Southern Ocean by Circulation in the Antarctic 1 2 2 Circumpolar Current and the Weddell Gyre 3 4 3 Matthew Donnelly1, Harry Leach2 and Volker Strass3 5 6 4 1British Oceanographic Data Centre, National Oceanography Centre, Joseph Proudman Building, 6 Brownlow 7 8 5 Street, Liverpool, L3 5DA, UK 9 10 6 2Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, 11 12 7 L69 3GP, UK 13 14 8 3Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Postfach 12 01 61, D-27515 15 16 9 Bremerhaven, Germany 17 18 10 Corresponding author: Matthew Donnelly 19 20 11 E-mail: [email protected] 21 22 12 Telephone: +44 151 795 4892 23 24 13 25 26 14 Abstract 27 28 29 15 The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is 30 31 16 assessed using a set of 37 hydrographic sections collected over a 20 year period in the Southern Ocean as part of 32 33 17 the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity maximum is observed 34 35 18 eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through 36 37 19 the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, 38 39 20 and in the Atlantic sector this acts to limit the direct poleward propagation of the salinity signal. -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Data Structure
Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference. -
Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole. -
An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate
An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate Presented by Matt Laffin Presentation Outline Introduction to Marine Sediment as a Proxy Introduction to McCave paper and inference of current strength Discuss Sediment Core site Discuss sediment depositionBIG CONCEPT and oceanography of the region Discuss sorting sedimentBring process the attention and Particle of your Size audience Analyzer over a key concept using icons or Discussion of results illustrations Marine Sediment as a Proxy ● Marine sediment cores are an excellent resource to determine information about the past. ● As climatic changes occur so do changes in sediment transportation and deposition. ○ Sedimentation rates ○ Temperature ○ Biology How can we determine past ocean current strength using marine sediment? McCave et al, 1995 ● “Sortable silt” flow speed proxy ● Size distributions of sediment from the Nova Scotian Rise measured by Coulter Counter (a) Dominant 4 μm and weak 10 μm mode under slow currents (b) Silt signature after moderate currents of 5–10 cm s−1 (c) Pronounced mode in the part of the silt spectrum >10 μm after strong currents (10–15 cm s−1) McCave et al, 1995/2006 Complications to determine current strength ● Particles < 10 μm are subject to electrostatic forces which bind them ● The mean of 10–63 μm sortable silt denoted as is a more sensitive indicator of flow speed. McCave et al, 1995/2006 IODP Leg 178, Site 1096 A and B Depositional Environment Depositional Environment ● Sediment is eroded and transported -
Observing Tracers and the Carbon Cycle
OBSERVING TRACERS AND THE CARBON CYCLE Rana A. FINE1 and Liliane MERLIVAT2 and co-authors3 1Rosenstiel School, University of Miami, Miami, FL 33149, USA 2L.O.D.Y.C., Laboratoire d'Oceanographie Dynamique et de Climatologie, Universite Pierre et Marie Currie, Paris, France 3See footnote ABSTRACT - A program for repeated sampling of tracers and variables essential for quantitative understanding of the carbon cycle is recommended within CLIVAR/GOOS. The program is critical to our monitoring and understanding of climate change both natural and anthropogenic. The objectives are: the quantification of changes in the rates and spatial patterns of oceanic carbon uptake, fluxes and storage of anthropogenic CO2, the detection and possible quantification of changes in water mass renewal and mixing rates, and providing a stringent test of the time integration of models natural and anthropogenic climate variabilityc. The strategy is to put in place a global observing network for tracers and CO2 to document the continuing large scale evolution of these fields. hydrographic lines are advocated, although it is realized that there has to be a limit on these observations due to logistical and resource constraints. Thus, there is the need to supplement these observations with time series and autonomous measurements to provide detail in the temporal evolution of the fields. 1. THE OBJECTIVES A program for repeated sampling of tracers and the carbon cycle is recommended within CLIVAR/GOOS. The measurement program presented here is based upon: widespread consensus expressed in various reports that have proceeded this document, cost effectiveness, and obtaining data that are critical to our monitoring and understanding of climate change both natural and anthropogenic. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Arctic and Antarctic Research Institute” Russian Antarctic Expedition
FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October - December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2014 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October – December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2014 Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M.O. Krichak (RAE), Section 2 Ye.I. Aleksandrov (Department of Sea-Air Interaction) Section 3 G.Ye. Ryabkov (Department of Ice Regime and Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Sea-Air Interaction) Section 6 I.V. Moskvin, Yu.G. Turbin (Department of Geophysics) Section 7 V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2. METEOROLOGICAL CONDITIONS IN OCTOBER-DECEMBER 2013 42 3. -
Helicopter Operations of the Argentine Air Force in Antarctica 1968 - 2015
transactions of the institute of aviation ISSN 0509-6669 no. 1(242) , pp. 57-71, Warsaw 2016 eISSN 2300-5408 Doi: 10.5604/05096669.1202202 heLicoPter oPerations of the arGentine air force in antarctica 1968 - 2015 GuIllermo S. P oSadaS argentine air Force abstract This paper is a very brief summary of the operations of the argentine air Force (aaF) helicopters in the argentine antarctic. It is a transcription of a Power Point Presentation of the lecture that was given on June 26, 2015 during the X National Helicopter Forum 2015 held at the Institute of aviation in Poland. Keywords : argentine air Force, helicopter operations, antarctic. 1. introDuction The antarctica is a hostile and deserted territory with extremely low temperatures. Winters are long and in summers sometimes the weather conditions do not allow for air operations to last longer than a few hours per day. However,it is possible to operate helicopters safely,following certain guidelines and having the right equipment which is not always very sophisticated. Helicopter operations in the antarctica are very risky and for that reason their preparation has to be very careful in order to make the as safe as possible. It is essential to have fuel, lubricating oils and fluids suitable for low temperatures as well as well-trained people. 2. Brief DescriPtion of the antarctic continent Fig. 1 the antarctic continent,where the South Pole , is located is in the south hemisphere from parallel 60° South. The antarctic Continent has a surface of 14 millions of km 2. during summer the area free of ice is only 280 000 km 2. -
Frozen Desert Alive the Role of Sea Ice for Pelagic Macrofauna and Its Predators: Implications for the Antarctic Pack-Ice Food Web
Frozen Desert Alive The role of sea ice for pelagic macrofauna and its predators: implications for the Antarctic pack-ice food web Hauke Flores FrozenDesertAlive �-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 0',2#" 7-,1#,--'#, T4TQ""# "*#!20-,'!4#01'-,4'* *#2S &22.S 555T03%T,* ' *'-2&##) !2*-%' #12,"#, #*#).3 03% "'11#022'#1 ',"#6 %&'(S[YZV[RVXVXVVUU[VT 1%23&4(%5"1&%"%617(%(6"( FrozenDesertAlive �-*#-$1#'!#$-0.#*%'!+!0-$3,,"'21.0#"2-01S '+.*'!2'-,1$-02&#,20!2'!.!)V'!#$--"5# 17"8&9:1%8 2#04#0)0'(%',%4,"-!2-02',"# <'1)3,"##,(23305#2#,1!&..#, ,"#1'()13,'4#01'2#'260-,',%#, -.%#8%4,"# 1#!2-0>%,'$'!31Q"0T8T?5021Q ',-.#, 02#4#0"#"'%#,-. 40'("%S+#'TRR[ -+SUTSW330 "--0 HaukeFlores %# -0#,-.SZ1#.2#+ #0S[YV 2#'0#+#0&4#, 0-+-2-0 S0-$T"0T<T2T<-*$$ 9-.0-+-2-0 SB0T2TT4,80,#)#0 '#--0"#*',%1!-++'11'# S0-$T"0T'0T:T2T<T"#'0 S0-$T"0T4T5T'2&+,, S0-$T"0T8TT>T5-*!)#02 %,+#+-07-$+7%0,"+-2� %,6#"#,)#,,+#',#60-!+322#0 6'1#*8*-0#1 TV&#.TS[TSVTX2,TTRRZ Contents ",%*'1&13++07 Z B32!&13++07 SS 6#0+,13++07 SV 9&.2#0S 6#,#0*%,20-"3!2'-, S[ 9&.2#0T B'#2-$25-'!#$'1&1.#!'#1$0-+2&#&-32&&*," U[ %1*,"1,""*#.&,2%1*,"1QChampsocephalusgunnari ,"Chaenocephalusaceratus',TRRSTRRU PolarBiology27(2004)119R129 9&.2#0U ",#0%7!-,2#,2-$,20!2'!+#1-.#*%'!$'1S XS '+.*'!2'-,1$-02&#+0',#$--"5# PolarBiology29(2006)10451051 9&.2#0V B'120' 32'-,Q 3,",!#,"#!-*-%'!*0#*#4,!#-$ YU .#*%'!$'1',2P#4&#Q&-32�,7!#, MarineEcologyProgressSeries367(2008)271282 9&.2#0W -
Intercomparison of Ground- and Satellite-Based Total Ozone Data Products at Marambio Base, Antarctic Peninsula Region
atmosphere Article Intercomparison of Ground- and Satellite-Based Total Ozone Data Products at Marambio Base, Antarctic Peninsula Region Klára Cˇ ížková 1,2,*, Kamil Láska 1 , Ladislav Metelka 2 and Martin Stanˇek 2 1 Department of Geography, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic; [email protected] 2 Solar and Ozone Observatory, Czech Hydrometeorological Institute, 500 08 Hradec Králové, Czech Republic; [email protected] (L.M.); [email protected] (M.S.) * Correspondence: [email protected] Received: 26 October 2019; Accepted: 15 November 2019; Published: 18 November 2019 Abstract: This study aims to compare the ground-based Brewer spectrophotometer total ozone column measurements with the Dobson spectrophotometer and various satellite overpass data available at Marambio Base during the period 2011–2013. This station provides a unique opportunity to study ozone variability near the edge of the southern polar vortex; therefore, many institutions, such as the National Meteorological Service of Argentina, the Finnish Meteorological Institute and the Czech Hydrometeorological Institute, have been carrying out various scientific activities there. The intercomparison was performed using total ozone column data sets retrieved from the ground-based instruments and from Ozone Monitoring Instrument (OMI)—Total Ozone Mapping Spectrometer (TOMS), OMI–Differential Optical Absorption Spectroscopy (DOAS), Global Ozone Monitoring Experiment 2 (GOME2), and Scanning Imaging Absorption Spectrophotometer for Atmospheric Cartography (SCIAMACHY) satellite observations. To assess the quality of the selected data products, comparisons with reference to the Brewer spectrophotometer single observations were made. The performance of the satellite observational techniques was assessed against the solar zenith angle and effective temperature, as well as against the actual shape of the vertical ozone profiles, which represent an important input parameter for the satellite ozone retrievals. -
Gazette Quarterly
EEXXPPLLOORREERR’’SS GGAAZZEETTTTEE Published Quarterly in Pensacola, Florida USA for the Old Antarctic Explorers Association Uniting All OAEs in Perpetuating the Memory of United States Involvement in Antarctica Volume 18, Issue 3 Old Antarctic Explorers Association, Inc Jul-Sep 2018 Photo courtesy of Sydney Cullis The HMS Terra Nova departing Simon’s Bay for Antarctica in 1910. Painting commissioned by Sydney Cullis The Antarctic-African Connection By Ed Hamblin off our tour with four nights there. I thought we might be hen one thinks of Africa, probably jungles, rugged able to get together for a drink or something and socialize a W landscapes, and wild animals are what come to mind. bit. After a series of back and forth e-mails, we had a date But Antarctica? during some of our tour “dead time” to meet up. Also Last fall, my wife and I decided to take a trip to South through those e-mails, Dr. Cullis started apprising me of the Africa, as part of an organized tour in order to get an Cape Town area Antarctic points of interest, and forwarded opportunity to see routine African “stuff”. We booked a me a few pictures. Thanks to the pictures, I found out Cape two-week trip for April of 2018 with some “travel buddies” Town has been a stopping off point for Antarctic we had met previously in the Galapagos Islands. Shortly expeditions dating to the 18th century. Many of the early after that, I decided to see if I could connect with one of our explorers we are all familiar with spent time in Cape Town international OAEA members, Dr.