Riken Research Volume % Number &

Total Page:16

File Type:pdf, Size:1020Kb

Riken Research Volume % Number & APRIL !"#$ RIKEN RESEARCH VOLUME % NUMBER & Melting point 900 MHz NMR facility in Yokohama © 2013 RIKEN TABLE OF CONTENTS Table of contents HIGHLIGHT OF THE MONTH 4 A vertebrate family reunion RESEARCH HIGHLIGHTS 6 Melting back and forth 7 Silicon’s double magic # 8 Watching bioactive molecules at work 9 Cancer drugs taking shape 10 Stopping the rot 11 Understanding metabolism through computer predictions 12 Cellular networks up close 13 Stem cell therapy for Parkinson’s disease $ FRONTLINE 14 Generating cancer blueprints for future therapies RIKEN PEOPLE 18 Masayo Takahashi, Laboratory for Retinal Regeneration !# !" RIKEN RESEARCH RIKEN, Japan’s flagship research institute, makers interested in science and aims to raise conducts basic and applied experimental global awareness of RIKEN and its research. research in a wide range of science and Sendai technology fields including physics, For further information on the research chemistry, medical science, biology and presented in this publication or to arrange an Wako engineering. Initially established as a private interview with a researcher, please contact: Nagoya research foundation in Tokyo in !"!#, RIKEN Tsukuba became an independent administrative RIKEN Global Relations Office Tokyo Yokohama institution in $%%&. $'!, Hirosawa, Wako, Saitama, &(!'%!"), Japan Osaka TEL: +)! *) *+$ !$$( Kobe RIKEN RESEARCH is a website and print FAX: +)! *) *+& &+)# Harima publication intended to highlight the best E'Mail: [email protected] research being published by RIKEN. It is written URL: www.riken research.riken.jp for a broad scientific audience and policy www.riken.jp RIKEN supports research at nine sites across Japan RIKEN RESEARCH | VOL. ! | NUMBER " | APRIL #$%& | www.rikenresearch.riken.jp 3 HIGHLIGHT OF THE MONTH Biology A vertebrate family reunion By demonstrating the close ‘relatedness’ of two primitive jawless fish, scientists begin to assemble a more accurate depiction of the early history of vertebrate evolution Roughly !"" million years ago, our ances# tors began developing a physical charac# teristic that is almost universal among modern vertebrates: jaws. In fact, the hagfish and the lamprey are the only known living vertebrates that do not belong to this ‘gnathostome’ majority. These jawless ‘cyclostomes’ are instead generally considered to be holdovers from the earliest days of the vertebrate lineage. Yet hagfishes and lampreys bear striking physiological differences, calling into question the closeness of their relat# edness and their relative positions on the ‘evolutionary tree’. New research from Shigeru Kuratani’s team at the RIKEN Center for Developmental Biology Figure 1: Adult hagfish, Eptatretus burgeri, seen from dorsal view. now provides striking evidence that © !"#$ Shigeru Kuratani, RIKEN Center for Developmental Biology these two fish should indeed be grouped together, based on a shared process of Back to the beginning craniofacial development that is distinct to collect enough adult hagfishes to allow $ from gnathostomes . One major developmental difference tissue to be cultivated in the laboratory, %e hagfish &Fig. $' lacks several features observed in hagfishes pertains to an providing unprecedented access to that define the vertebrate body plan, with essential endocrine gland known as freshly laid hagfish eggs &Fig. )'. This a head that looks strikingly different from the adenohypophysis. In lampreys and achievement has given the team valuable the lamprey in cross#section, leading some other vertebrates, this organ develops insights into the embryology of this scientists to posit that hagfishes repre# from an embryonic tissue called the enigmatic species. sent a more primitive digression from ectoderm, while previous analyses have %rough close examination of crani# the vertebrate lineage. %is would mean suggested that the hagfish adenohy# ofacial formation at precise timepoints lampreys are a separate, more direct ante# pophysis arises from an entirely differ# in hagfish development with the aim cedent of gnathostomes, undermining the ent embryonic tissue(the endoderm. of identifying similarities and differ# idea that both species belong to a single However, Kuratani was concerned about ences relative to the lamprey and a rep# offshoot group of cyclostomes. the foundations of that conclusion. resentative gnathostome species, the “It is a recent trend to view each “%ose observations were partly based on cloudy catshark, Kuratani’s team has animal lineage's developmental program ill#fixed samples with lots of tissue dis# made a number of important observa# as diverging and differing from each tortion, and from very few specimens,” tions. For example, during an embry# other,” says Kuratani, “and not viewing he says. onic stage known as the neurula, the one specific program as ancestral to the Historically, hagfish eggs have proved endoderm and ectoderm are brought others.” To resolve this debate, Kuratani remarkably difficult to obtain. By into direct proximity with one another and colleagues began a deep analysis of working with local Japanese fishermen, at a structure known as the oropharyn# hagfish development. however, Kuratani’s team has been able geal membrane, which ultimately forms 4 RIKEN RESEARCH | VOL. ! | NUMBER " | APRIL #$%& | www.rikenresearch.riken.jp HIGHLIGHT OF THE MONTH the mouth. However, the research# tree. “With these findings, people will development, but they also intend to ers identified another membrane in be convinced that these animals are evo# broaden their investigation of early evo# the hagfish neurula that appears to be lutionarily very close to each other,” says lutionary history to include the amphi# unique to this group of species, which Kuratani, “and it also helps us identify oxus(also known as a lancelet(which they termed the secondary oropharyn# homologous organs and structures in is an invertebrate that scientists see as a geal membrane &SOM'. %ey concluded adult animals, which is very hard with close precursor to the emergence of ver# that previous investigators used the simple dissection.” tebrate species. “We hope to reconstruct wrong ‘landmark’, mistaking the SOM Their results also offer some other early vertebrate evolution and the estab# for the oropharyngeal membrane, and interesting insights. For example, the lishment of the vertebrate body plan by thereby incorrectly positioned the origin physiological oddities that have helped describing it as changes in the develop# of the adenohypophysis within the confound the positioning of hagfishes on mental program associated with specific endoderm. Further embryonic analysis the evolutionary timeline(such as the genomic changes,” says Kuratani. confirmed that this gland originates in absence of a vertebral column(suggest !. Oisi, Y., Ota, K.G., Kuraku, S., Fujimoto, S. & the hagfish ectoderm, as with the shark that this species may have actually shed Kuratani, S. Craniofacial development of hag" and lamprey. certain ‘advanced’ features found in fishes and the evolution of vertebrates. Nature Kuratani and his colleagues identified lampreys to accommodate its distinc# !"#, !#$%!&$ '($!)*. other, clear similarities in lamprey and tive lifestyle. “Hagfishes dive into rotten hagfish craniofacial development. In bodies of whales and large fish,” explains ABOUT THE RESEARCHER both animals the nostril and adenohy# Kuratani, “and make a movable knot in pophysis originate from a single source their long body to pull themselves out of tissue, remaining adjacent in the mature the body they were eating.” By compari# animal. In comparison, these structures son, lampreys feed on small organisms arise from two separate tissues in gna# in the water or by attaching parasitically thostome species, and mature gnathos# to the exterior of other fish. tomes typically have two nostrils &rather Most importantly, this embryologi# than the one observed in cyclostomes' cal comparative analysis has identi# positioned further apart from the adeno# fied potential commonalities between hypophysis, which is in turn connected processes observed in cyclostome devel# with the mouth and throat. opment and those seen in the most primitive gnathostomes, indicating the Uncovering an ancestral possibility of a shared ‘basic blueprint’ for connection head formation. “%is suggests a pattern © !"#$ RIKEN These and other findings from Kura# that could be regarded as ancestral for Shigeru Kuratani received his PhD from tani’s team strongly support a model in all vertebrates,” concludes Kuratani. the Kyoto University Department of which hagfishes and lampreys belong to In future work, his team will continue Zoology. From 1988 to 1991 he worked a common ‘branch’ of the evolutionary to explore the mysteries of hagfish in experimental embryology in the Department of Anatomy at the Medical College of Georgia before moving to the Biochemistry Department at the Baylor College of Medicine, where he was engaged in molecular embryological research. He returned to Japan in 1994 to take on the position of associate professor at the Institute of Medical Embryology and Genetics at the Kumamoto University School of Medicine. He moved to Okayama University to assume a professorship in the Department of Biology in 1997, where he remained until he was appointed Shigeru Kuratani, RIKEN Center for Developmental Biology Developmental for RIKEN Center Shigeru Kuratani, team leader at the RIKEN Center for !"#$ Developmental Biology. He was appointed © group director in 2005. Kuratani’s research focuses on vertebrate head
Recommended publications
  • CANON INC. (Exact Name of the Registrant As Specified in Its Charter)
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM SD SPECIALIZED DISCLOSURE REPORT CANON INC. (Exact name of the registrant as specified in its charter) JAPAN 001-15122 (State or other jurisdiction of (Commission (IRS Employer incorporation or organization) File Number) Identification No.) 30-2, Shimomaruko 3-chome , Ohta-ku, Tokyo 146-8501, Japan (Address of principle executive offices) (Zip code) Eiji Shimizu, +81-3-3758-2111, 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan (Name and telephone number, including area code, of the person to contact in connection with this report.) Check the appropriate box to indicate the rule pursuant to which this form is being filed and provide the period to which the information in this form applies: Rule 13p-1 under the Securities Exchange Act (17 CFR 240.13p-1) for the reporting period from January 1, 2017 to December 31, 2017. Section 1 - Conflict Minerals Disclosure Established in 1937, Canon Inc. is a Japanese corporation with its headquarters in Tokyo, Japan. Canon Inc. is one of the world’s leading manufacturers of office multifunction devices (“MFDs”), plain paper copying machines, laser printers, inkjet printers, cameras, diagnostic equipment and lithography equipment. Canon Inc. earns revenues primarily from the manufacture and sale of these products domestically and internationally. Canon Inc. and its consolidated companies fully have been aware of conflict minerals issue and have been working together with business partners and industry entities to address the issue of conflict minerals. In response to Rule 13p-1, Canon Inc. conducted Reasonable Country of Origin Inquiry and due diligence based on the “OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas,” for its various products.
    [Show full text]
  • J-PARC MLF MUSE Muon Beams
    For Project X muSR forum at Fermilab Oct 17th-19th,2012 J-PARC MLF MUSE muon beams J-PARC MLF Muon Section/KEK IMSS Yasuhiro Miyake N D-Line In operation N U-Line Commissioning started! N S-Line Partially constructed! N H-Line Partially constructed! Proton Beam Transport from 3GeV RCS to MLF� On the way, towards neutron source� Graphite Muon Target! G-2, DeeMe Mu-Hf Super Highexperiments Resolution Powder etc. H-LineDiffractometer (SHRPD) – KEK are planned 100 m LineBL8� NOBORU - IBARAKI Biological S-Line JAEA BL4� Crystal Diffractometer Nuclear Data - Hokkaido Univ. High Resolution Chopper 4d Space Access Neutron Spectrometer Spectrometer(4SEASONS) Muon Target Grant - in - Aid for Specially Promoted Research, MEXT, Neutron Target U-Line HI - SANS Versatile High Intensity (JAEA) Total Diffractometer(KEK /NEDO) D-Line&9&$3/-&3&1 (KEK) Cold Neutron Double Chopper Spectrometer IBARAKI Materials Design (CNDCS) - JAEA Diffractometer 30 m Muon Engineering Materials and Life Science Facility (MLF) for Muon & NeutronDiffractometer - JAEA Edge-cooling Rotating Graphite Graphite Fixed Target Target From January 2014! At Present! Will be changed in Summer 2013! Inves�gated during shut-­‐down! Fixed Target Rota�ng Target S-Line H-Line Surface µ+(30 MeV/c) Surface µ+ For HF, g-2 exp. For material sciences e- up to 120 MeV/c For DeeMe µ- up to 120 MeV/c For µCF Muon Target U-Line D-Line Ultra Slow µ+(0.05-30keV) Surface µ+(30 MeV/c) For multi-layered thin Decay µ+/µ-(up to 120 MeV/c) foils, nano-materials, catalysis, etc Users’ RUN, in Operation MUSE D-Line, since Sep., 2008 [The world-most intense pulsed muon beam achieved at J-PARC MUSE] ZZZAt the J-PARC Muon Facility (MUSE), the intensity of the pulsed surface muon beam was recorded to be 1.8 x 106/s on November 2009, which was produced by a primary proton beam at a corresponding power of 120 kW delivered from the Rapid Cycle Synchrotron (RCS).
    [Show full text]
  • FROM KEK-PS to J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan
    FROM KEK-PS TO J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan Abstract target are located in series. Every 3 s or so, depending The user experiments at J-PARC have just started. upon the usage of the main ring (MR), the beam is JPARC, which stands for Japan Proton Accelerator extracted from the RCS to be injected to the MR. Here, it Research Complex, comprises a 400-MeV linac (at is ramped up to 30 GeV at present and slowly extracted to present: 180 MeV, being upgraded), a 3-GeV rapid- Hadron Experimental Hall, where the kaon-production cycling synchrotron (RCS), and a 50-GeV main ring target is located. The experiments using the kaons are (MR) synchrotron, which is now in operation at 30 GeV. conducted there. Sometimes, it is fast extracted to The RCS will provide the muon-production target and the produce the neutrinos, which are sent to the Super spallation-neutron-production target with a beam power Kamiokande detector, which is located 295-km west of of 1 MW (at present: 120 kW) at a repetition rate of 25 the J-PARC site. In the future, we are conceiving the Hz. The muons and neutrons thus generated will be used possibility of constructing a test facility for an in materials science, life science, and others, including accelerator-driven nuclear waste transmutation system, industrial applications. The beams that are fast extracted which was shifted to Phase II. We are trying every effort from the MR generate neutrinos to be sent to the Super to get funding for this facility.
    [Show full text]
  • EARLY SCHIZOPHRENIA DETECTION Biomarker Found in Hair
    SPRING 2020 SHOWCASING THE BEST OF JAPAN’S PREMIER RESEARCH ORGANIZATION • www.riken.jp/en EARLY SCHIZOPHRENIA DETECTION Biomarker found in hair WHAT'S THE MATTER? LIVING UNTIL 110 READING THE MIND OF AI Possible link between Abundance of immune Cancer prognosis two cosmic mysteries cell linked to longevity method revealed ▲ Web of dark matter A supercomputer simulation showing the distribution of dark matter in the local universe. RIKEN astrophysicists have performed the first laboratory experiments to see whether the interaction between dark matter and antimatter differs from that between dark matter and normal matter. If such a difference exists, it could explain two cosmological mysteries: why there is so little antimatter in the Universe and what is the true nature of dark matter (see page 18). ADVISORY BOARD RIKEN, Japan’s flagship publication is a selection For further information on the BIOLOGY ARTIFICIAL INTELLIGENCE research institute, conducts of the articles published research in this publication or • Kuniya Abe (BRC) • Hiroshi Nakagawa (AIP) basic and applied research in by RIKEN at: https://www. to arrange an interview with a • Makoto Hayashi (CSRS) • Satoshi Sekine (AIP) a wide range of fields riken.jp/en/news_pubs/ researcher, please contact: • Shigeo Hayashi (BDR) including physics, chemistry, research_news/ RIKEN International • Joshua Johansen (CBS) PHYSICS medical science, biology Please visit the website for Affairs Division • Atsuo Ogura (BRC) • Akira Furusaki (CEMS) and engineering. recent updates and related 2-1, Hirosawa, Wako, • Yasushi Okada (BDR) • Hiroaki Minamide (RAP) articles. Articles showcase Saitama, 351-0198, Japan • Hitoshi Okamoto (CBS) • Yasuo Nabekawa (RAP) Initially established RIKEN’s groundbreaking Tel: +81 48 462 1225 • Kensaku Sakamoto (BDR) • Shigehiro Nagataki (CPR) as a private research results and are written for a Fax: +81 48 463 3687 • Kazuhiro Sakurada (MIH) • Masaki Oura (RSC) foundation in Tokyo in 1917, non-specialist audience.
    [Show full text]
  • Table of Contents
    AMMRA Annual Report 2012 Table of Contents AMMRA, the Past and Future ............................................................... 1 Welcome Address ................................................................................ 4 AMMRA Members ............................................................................... 6 AMMRA Charter .................................................................................. 7 AMMRA Organizations ........................................................................11 Briefing from Member Institutions ......................................................13 Biological Resource Centre, A-STAR, Singapore ...................................15 Center for Animal Resources and Development, Kumamoto ...............17 Laboratory Animal Resource Center, KRIBB, Ochang ...........................23 National Applied Research Laboratories, Taipei ..................................29 National Center for Mutant Mice of China, Nanjing ............................35 RIKEN BioResource Center (BRC), Tsukuba ..........................................43 AMMRA Annual meetings… ............................................................. ..51 Contact List .........................................................................................53 AMMRA, the Past and Future President – Dr. Xiang Gao AMMRA services as a strong bondage for us all. Personally, I wish to express my appreciation to Dr. Ken-ichi Yamamura for his vision and tremendous efforts over last 6 years. Of course I am also in debt to all members
    [Show full text]
  • Integrative Medical Sciences Stratified Medicine for a Healthy Long-Lived Society
    RIKEN Center for Integrative Medical Sciences Stratified medicine for a healthy long-lived society. Creation of a research platform for new biomedical science. Japan is facing urgent health issues, such as lifestyle-related diseases, various cancers and brain-function disorders, in an increasingly aging society. It has become apparent that the human immune system not only relates to autoimmune diseases, infectious diseases and allergies, but also to many other age-related disorders. It is now thought that disease onset is caused by highly complex combinations of environmental stresses and body reactions, in addition to genomic variations, in each individual. At the RIKEN Center for Integrative Medical Sciences (IMS), we aim to clarify the pathogenic mechanisms underlying human diseases and to translate this knowledge into novel therapies for the benefit of society. IMS will tackle various research questions Director to expound the functions of the human genome and immune system. IMS research is Kazuhiko Yamamoto based on the concept of disease as a dynamic body system interacting with environmental stresses. We will create a research platform to clarify the processes that maintain or disrupt body homeostasis and then transfer that knowledge into the creation of new therapies and medicines. In particular, IMS will strengthen its genome and immunology research platforms through new inputs from functional genomics research, with special emphasis on gene expression networks such as the FANTOM project. Based on this new research platform, IMS will integrate the knowledge of both human genome function and immune system, and lead cutting edge science to solve the problems of various diseases. IMS will promote comprehensive multi-layered analysis of the genome, epigenome, proteins, lipids, cells, organs and individuals.
    [Show full text]
  • 2020 Appendix I Smelter List
    APPENDIX I Smelter List Metal Smelter Name Smelter Location Country Gold 8853 S.p.A. ITALY Gold Abington Reldan Metals, LLC UNITED STATES OF AMERICA Gold Advanced Chemical Company UNITED STATES OF AMERICA Gold Aida Chemical Industries Co., Ltd. JAPAN Gold Al Etihad Gold Refinery DMCC UNITED ARAB EMIRATES Gold Allgemeine Gold-und Silberscheideanstalt A.G. GERMANY Almalyk Mining and Metallurgical Complex Gold (AMMC) UZBEKISTAN Gold AngloGold Ashanti Corrego do Sitio Mineracao BRAZIL Gold Argor-Heraeus S.A. SWITZERLAND Gold Asahi Pretec Corp. JAPAN Gold Asahi Refining Canada Ltd. CANADA Gold Asahi Refining USA Inc. UNITED STATES OF AMERICA Gold Asaka Riken Co., Ltd. JAPAN Gold Atasay Kuyumculuk Sanayi Ve Ticaret A.S. TURKEY Gold AU Traders and Refiners SOUTH AFRICA Gold Aurubis AG GERMANY Gold Bangalore Refinery INDIA Bangko Sentral ng Pilipinas (Central Bank of the Gold Philippines) PHILIPPINES Gold Boliden AB SWEDEN Gold C. Hafner GmbH + Co. KG GERMANY Gold C.I Metales Procesados Industriales SAS COLOMBIA Gold Caridad MEXICO Gold CCR Refinery - Glencore Canada Corporation CANADA Gold Cendres + Metaux S.A. SWITZERLAND Gold CGR Metalloys Pvt Ltd. INDIA Gold Chimet S.p.A. ITALY Gold Chugai Mining JAPAN Gold Daye Non-Ferrous Metals Mining Ltd. CHINA Gold Degussa Sonne / Mond Goldhandel GmbH GERMANY Gold DODUCO Contacts and Refining GmbH GERMANY Gold Dowa JAPAN Gold DSC (Do Sung Corporation) KOREA, REPUBLIC OF Gold Eco-System Recycling Co., Ltd. East Plant JAPAN Gold Eco-System Recycling Co., Ltd. North Plant JAPAN Gold Eco-System Recycling Co., Ltd. West Plant JAPAN Gold Emirates Gold DMCC UNITED ARAB EMIRATES Gold GCC Gujrat Gold Centre Pvt.
    [Show full text]
  • RIKEN Bioresource Center Brochure
    RIKEN TSUKUBA BRANCH RIKEN BioResource Research Center July, 2020 Contents ●Greetings…………………………………… 3 ●Overview of the RIKEN BRC……………… 5 For Trust, Sustainability and Leadership ! ●Mouse……………………………………… 7 ●Arabidopsis & Brachypodium……………… 8 ●Cell…………………………………………… 9 ●Gene…………………………………………10 ●Microbe……………………………………… 11 ●Laboratories………………………………12 ●History, Budget, Personnel, Facilities ……15 ●Organization…………………………………16 ●Activities of RIKEN BRC……………………17 ●NBRP (National Bioresource Project) ……18 not only to researchers in academia but also to those in the private sector, with large-scale facilities and equipment such as supercomputers Hiroshi Matsumoto, Ph.D and the SPring-8 synchrotron facility, as well Toshihiko Shiroishi, Ph.D President as bioresources. In this regard, the RIKEN Director RIKEN BioResource Research Center (BRC) has long RIKEN BioResource Rresearch Center served as one of RIKEN’s core infrastructure At present, numerous new bioresources are centers. being developed in a wide range of fields of the RIKEN celebrated its centennial on March 20, Finally, precisely because RIKEN is not Bioresources are essential experimental life science, with the advances in genome science 2017. The current year of 2018 marks another limited to any specific one research field, our third materials for researches in life science and and the emergence of innovative genome editing milestone, the 60th anniversary of RIKEN’s strategy is to pioneer new research fields. One innovation based on the life science. In January technologies. These are experimental
    [Show full text]
  • Centre for Intellectual Property Strategies (CIPS) – Japan
    Centre for Intellectual Property Strategies (CIPS), Japan Centre for Intellectual Property Strategies (CIPS), Japan 1 (by Jonas Scholze, OECD)2 Description of the approach The Centre for Intellectual Property Strategies (CIPS) is an institution within RIKEN, Japan’s largest research centre. It consists of a multitude of research institutes with different headquarters distributed across Japan. Additionally there are some international branches in South East Asia and Europe. RIKEN was founded in 1917 by a range of private companies as a cooperative centre for joint research. In 1958 the centre changed to a public research institute. Since 2003 it has been administered as an independent administrative institution within the Japanese Ministry of Education, Culture, Sports, Science and Technology. Today it is one of the world leading research centres for basic and applied research in the field of physics, chemistry, medical science, biology and engineering. CIPS was established in April 2005, is located in Saitamo near Tokyo and acts as mediator between the research centre and the private industry. It aims to coordinate tasks connected to the protection of intellectual property and to capitalise on research achievements of the RIKEN institutes. However, its task is not confined to patenting and licensing of inventions and research achievements and associated legal processes. It is also used as a contact point for academic-industry linkages. Such programs enable and fund joint research activities between private companies and RIKEN research institutes. Thus CIPS continues to function as the increasingly popular approach of a ‘one-stop shop’ – a single internal contact point for a range of functions and services.
    [Show full text]
  • Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA
    DPRIETI Discussion Paper Series 14-E-021 Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA SUZUKI Jun National Graduate Institute for Policy Studies (GRIPS) TSUKADA Naotoshi RIETI GOTO Akira RIETI The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/en/ RIETI Discussion Paper Series 14-E-021 May 2014 Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA* SUZUKI Jun, TSUKADA Naotoshi, and GOTO Akira National Graduate Institute for Policy Studies (GRIPS) Research Institute of Economy, Trade and Industry (RIETI) Abstract In this paper, we focus on three large public research institutes (PRIs) in Japan—National Institute of Advanced Industrial Science and Technology (AIST), the Institute of Physical and Chemical Research (RIKEN), and the Japan Aerospace Exploration Agency (JAXA)—and investigate their roles in helping Japan’s industry by examining their patents. First, the background and history of the development of these institutions are described briefly. We employ four measures drawn from patent data (inventor forward citation, examiner forward citation, family size, and generality index) to describe the inventive activities of PRIs. Universities’ and firms’ patents are used as benchmarks. The impact of the PRIs’ research collaboration with the private sector is analyzed as well. We found that each of the three PRIs has been playing a unique role in Japan’s innovation system. In addition, we found out that universities’ patenting activity has been facing difficulties particularly in recent years. Finally, we discuss the factors that might affect the research outcome. Keywords: Public research institute, University, Patent, Research collaboration JEL classification: O34, O32 RIETI Discussion Papers Series aims at widely disseminating research results in the form of professional papers, thereby stimulating lively discussion.
    [Show full text]
  • Collaboration of the Two Giants—A*STAR and RIKEN
    www.asiabiotech.com General News Singapore Collaboration of the Two Giants— A*STAR and RIKEN *STAR and RIKEN have signed a memorandum of understanding (MOU) creating opportunities for collaboration between the two countries in the fields Aof biomedical science and biotechnology. RIKEN and A*STAR are planning to conduct research together mostly in the life sciences and biotechnology. The Singapore base for this research will be the Biopolis, Singapore. RIKEN will set up an office in the Biopolis by the end of 2005. Under the MoU, there will be exchange of researchers and staff; exchange of scientific and technological information, including delivering of lectures and holding joint seminars and symposia; exchange of scientific and technological research materials; joint research and development; and sharing of best practices in intellectual property management and technology transfer. Over the past few months, study teams from A*STAR have been visiting RIKEN to explore joint research areas and three key areas have been identified for possible collaboration: i) Cancer: Structural analysis and drug development related to cancer transcription factors. ii) Infectious diseases: Screening and rapid diagnosis for known and unknown environmental pathogens. iii) Neuroscience: Training of promising young neuroscientists from Singapore at RIKEN. “Singapore is a vital partner for Japan in tackling problems specific to Asia (the environment, diseases particular to the region, etc.). I believe that technologically and socially it has a variety of strong points in Asia. A*STAR has medical, chemical and engineering research institutes and the Biopolis plan. I believe that there are thus many areas of research on which RIKEN and A*STAR can collaborate.
    [Show full text]
  • The Japan-US Digital Innovation Hub Workshop
    American Council on Education U.S.-Japan Research Collaboration in the Global Digital Era: The Japan-U.S. Digital Innovation Hub Workshop CAROLINE F. BENTON AND GIL LATZ U.S.-JAPAN HIGHER EDUCATION ENGAGEMENT STUDY (USJP HEES) This case study is part of a larger study by the American Council on Education (ACE). This case study and the accompanying live, interactive database, real-time analysis, fact sheet, and infographics provide a foundation to capture U.S.-Japan higher education institutional partnership activities. The goals of USJP HEES are to improve mutual understanding and cooperation within the U.S.-Japan higher education community and to capitalize on its strengths within the global higher education context. The U.S.-Japan Higher Education Engagement Study is made possible through the generous support of the Japan Foundation Center for Global Partnership. Visit www.acenet.edu/usjp-hees to learn more about the project. Introduction The Japan-U.S. Digital Innovation Hub Workshop is an initiative of U.S. and Japanese institutions of higher education that aims to establish a consortium for collaboration on joint research and education in the fields of data science, artificial intelligence (AI), and cybersecurity. The annual workshops provide lectures and encour- age debates to promote bonds between research institutions of the two countries, allowing for synergistic sharing of knowledge and resources for developing advances in these fields. Participants have included many top-level representatives of government agencies and industries from both countries. Beginnings of the Workshop The idea of updating and strengthening Japan-U.S. collaboration in the field of digital sciences was officially discussed at the 12th U.S.-Japan Joint High-Level Committee Meeting on Science and Technology Coop- eration held in Washington, DC in April 2013, which was attended by high-level policymakers for science, technology, and education from both countries.
    [Show full text]