Records of the Zoological Survey of India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Geometric Morphometric Comparison of Abu Mullet, Planiliza Abu (Heckel, 1843) Populations in Bushehr Basin, Iran
Tanzania Journal of Science 47(1): 1-9, 2021 ISSN 0856-1761, e-ISSN 2507-7961 © College of Natural and Applied Sciences, University of Dar es Salaam, 2021 Geometric Morphometric Comparison of Abu Mullet, Planiliza abu (Heckel, 1843) Populations in Bushehr Basin, Iran Fatemeh Shabaninejad1, Yazdan Keivany1* and Dara Bagheri2 1Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran 2Department of Fisheries, Faculty of Marine Science and Technology, Persian Gulf University, P. O. Box 75615-415 Bushehr, Iran Co-authors’ e-mails: [email protected] (Shabaninejad); [email protected]; [email protected] (Bagheri) *Corresponding author, e-mail addresses: [email protected]; [email protected] Received 24 Oct 2020, Revised 21 Dec 2020, Accepted 28 Dec 2020, Published Feb 2021 Abstract Many fish behavior and habitats could be defined based on the fish morphology, thus, using the fish body shape, in addition to its genetic characteristics, could be used to infer the type of fish habitat and its characteristics. This study aimed to compare the body shapes of five populations of abu mullet, Planiliza abu (Heckel, 1843), in Bushehr basin using geometric morphometric method. Some 162 specimens from Hendijan, Genaveh, Helleh, Kaki and Mond rivers were used. Three morphometric characters, total length (TL), fork length (FL) and standard length (SL) were measured. Samples were photographed from the left side, then 18 landmarks were digitized using ImageJ software. Data obtained from Procrustes were analyzed by multivariate analysis using PCA and CVA. The results of PCA analysis showed significant differences between Kaki and other populations (P < 0.0001). -
Estuarine Fish Diversity of Tamil Nadu, India
Indian Journal of Geo Marine Sciences Vol. 46 (10), October 2017, pp. 1968-1985 Estuarine fish diversity of Tamil Nadu, India H.S. Mogalekar*, J. Canciyal#, P. Jawahar, D.S. Patadiya, C. Sudhan, P. Pavinkumar, Prateek, S. Santhoshkumar & A. Subburaj Department of Fisheries Biology and Resource Management, Fisheries College & Research Institute, (Tamil Nadu Fisheries University), Thoothukudi-628 008, India. #ICAR-National Academy of Agricultural Research Management, Rajendranagar, Hyderabad-500 030, Telangana, India. *[E-Mail: [email protected]] Received 04 February 2016 ; revised 10 August 2017 Systematic and updated checklist of estuarine fishes contains 330 species distributed under 205 genera, 95 families, 23 orders and two classes. The most diverse order was perciformes with 175 species, 100 genera and 43 families. The top four families with the highest number of species were gobidae (28 species), carangidae (23 species), engraulidae (15 species) and lutjanidae (14 species). Conservation status of all taxa includes one species as endangered, five species as vulnerable, 14 near threatened, 93 least concern and 16 data deficient. As numbers of commercial, sports, ornamental and cultivable fishes are high, commercial and recreational fishing could be organized. Seed production by selective breeding is recommended for aquaculture practices in estuarine areas of Tamil Nadu. [Keywords: Estuarine fishes, updated checklist, fishery and conservation status, Tamil Nadu] Introduction significant component of coastal ecosystem due to The total estuarine area of Tamil Nadu their immense biodiversity values in aquatic was estimated to be 56000 ha, which accounts ecology. The fish fauna inhabiting the estuarine 3.88 % of the total estuarine area of India 1. -
Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene. -
Polydactylus Opercularis (Gill, 1863) Fig
Threadfins of the World 65 Literature: Feltes in Carpenter (2003). Remarks: Although Polydactylus oligodon, originally described from Rio de Janeiro, Brazil and Jamaica on the basis of 2 specimens, had long been regarded as a junior synonym of P. virginicus by many authors, Randall (1966) recognized the former as valid and designated a lectotype for the species. Randall (1966) noted differences between P. oligodon and P. virginicus in the shape of the posterior margin of the maxilla, and certain meristic characters (including numbers of lateral-line scales, pectoral-fin rays and anal-fin rays) and proportional measurements (including length of anal-fin base). In particular, the rounded shape of the posterior margin of the maxilla has been subsequently treated as a diagnostic character for P. oligodon (versus truncate to concave in P. virginicus) in many publications (e.g. Randall in Fischer, 1978; Cervigón in Cervigón et al., 1993; Randall, 1996). According to Feltes in Carpenter (2003) and confirmed by examination by the author, however, that character shows considerable individual variation and it is difficult to clearly distinguish between P. oligodon and P. virginicus on that basis. Although P. oligodon and P. virginicus are very similar to each other and distinction between the 2 species in recent literature is somewhat confused, P. oligodon can be distinguished from the latter by the higher counts of pored lateral-line scales [67 to 73 (mode 70) versus 54 to 63 (mode 58) in the latter]. Polydactylus opercularis (Gill, 1863) Fig. 112; Plate IVb Trichidion opercularis Gill, 1863: 168 (type locality: west coast of Central America, probably Cape San Lucas, Baja California, Mexico; holotype apparently lost, see Motomura, Kimura and Iwatsuki, 2002). -
Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr. -
MARKET FISHES of INDONESIA Market Fishes
MARKET FISHES OF INDONESIA market fishes Market fishes indonesiaof of Indonesia 3 This bilingual, full-colour identification William T. White guide is the result of a joint collaborative 3 Peter R. Last project between Indonesia and Australia 3 Dharmadi and is an essential reference for fish 3 Ria Faizah scientists, fisheries officers, fishers, 3 Umi Chodrijah consumers and enthusiasts. 3 Budi Iskandar Prisantoso This is the first detailed guide to the bony 3 John J. Pogonoski fish species that are caught and marketed 3 Melody Puckridge in Indonesia. The bilingual layout contains information on identifying features, size, 3 Stephen J.M. Blaber distribution and habitat of 873 bony fish species recorded during intensive surveys of fish landing sites and markets. 155 market fishes indonesiaof jenis-jenis ikan indonesiadi 3 William T. White 3 Peter R. Last 3 Dharmadi 3 Ria Faizah 3 Umi Chodrijah 3 Budi Iskandar Prisantoso 3 John J. Pogonoski 3 Melody Puckridge 3 Stephen J.M. Blaber The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. -
41 (5) 2020 Special Issue
Journal Home page : www.jeb.co.in « E-mail : [email protected] Original Research Journal of Environmental Biology TM p-ISSN: 0254-8704 e-ISSN: 2394-0379 JEB CODEN: JEBIDP DOI : http://doi.org/10.22438/jeb/41/5(SI)/MS_36 White Smoke Plagiarism Detector Just write. Phylogenetic analysis revealed first report of Eleutheronema rhadinum lineage in the coastal waters of Malaysia N.W. Atikah1, Y.B. Esa1,2*, M. Rozihan1, M.F.S. Ismail1,2 and I.S. Kamaruddin1 1Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia 2International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia *Corresponding Author Email : [email protected] Paper received: 12.10.2019 Revised received: 18.01.2020 Accepted: 14.08.2020 Abstract Aim: To genetically identify Eleutheronema specimens and to perform phylogenetic analysis of Eleutheronema from the coastal waters of Malaysia using sequence analysis of mitochondrial Cytochrome c oxidase I (COI) gene. Methodology: A total 151 samples of Eleutheronema sp. were collected from Malaysian coastal water. DNA was extracted from 25 mg caudal tissue and standard procedures were followed for COI gene amplification and sequencing. The sequences were then proceeded for the analysis of mitochondrial COI sequence by using MEGA 7. Results: A total of 20 haplotypes were found. Phylogenetic analysis identified two genealogical lineages; E. tetradactylum and E. rhadinum, respectively, harbouring 10 haplotypes each. The genetic distance range was 16%- 17%, thus supported the two lineages as distinct taxa. E. rhadinum lineage has been reported for the first time from Malaysian coastal water. -
Polynemus Paradiseus Linnaeus, 1758 Occurring in Hooghly-Matlah Estuary, West Bengal
Indian Journal of Geo Marine Sciences Vol. 49 (01), January 2020, pp. 118-123 Temporal changes in feeding and bio-indices of Polynemus paradiseus Linnaeus, 1758 occurring in Hooghly-Matlah estuary, West Bengal Nilamani Borah1, Sudhir Kumar Das1* & Dibakar Bhakta2 1Department of FRM, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata- 700 094, West Bengal; 2ICAR-Central Inland Fisheries Research Institute, Regional Center, B-12, Hans Society, Harney Road, Vadodara-390 022, Gujarat. *[E-mail: [email protected]] Received 23 July 2018; revised 14 September 2018 Temporal changes in feeding and bio-indices of Polynemus paradiseus were studied at selected stretches of Hooghly- Matlah estuary for a period of eight months (December to July). It indicated that the fish mainly feeds on shrimps, fishes, and insects. The highest amount of shrimps (45.49%) was recorded in December and those of fishes (16.10%) during June and copepods and insects (7.31%) in July. The presence of a considerable amount of small fishes, insects and crustaceans in gut contents indicated carnivore-feeding habits of fish. Adult size of the species mainly feeds on shrimps and fishes whereas juveniles feed on shrimps, copepods, insects, and zoobenthos. Gastro-somatic index (GaSI) was maximum during March and April and minimum during June and December in fish. The monthly mean gonado-somatic index (GSI) values varied from 0.74 (December) to 1.32 (June) in males and 0.82 (December) to 5.44 (June) for female fish, respectively. [Keywords: Gastro-somatic index; Gonado-somatic index; Food and feeding habits; Hooghly-Matlah estuary; Polynemus paradiseus] Introduction its high commercial value. -
Digenean Trematodes of Fishes from Deep-Sea Areas Off the Pacific Coast of Northern Honshu, Japan
Deep-sea Fauna and Pollutants off Pacifi c Coast of Northern Japan, edited by T. Fujita, National Museum of Nature and Science Monographs, No. 39, pp. 25-37, 2009 Digenean Trematodes of Fishes from Deep-sea Areas off the Pacifi c Coast of Northern Honshu, Japan Toshiaki Kuramochi Department of Zoology, National Museum of Nature and Science, 3̶23̶1 Hyakunincho, Shinjuku-ku, Tokyo, 169̶0073 Japan E-mail: [email protected] Abstract: Thirty-two species plus nine unidentifi ed forms of digenean trematodes from 10 families, Bucepha- lidae, Fellodistomidae, Lepocreadiidae, Acanthocolpidae, Opecoelidae, Zoogonidae, Hemiuridae, Accacoeli- dae, Derogenidae and Lecithasteridae were recognized from 31 species of fi shes collected in deep-sea areas off the Pacifi c coast of northern Honshu, Japan. They are listed and several taxonomic and zoogeographic re- marks are given. A new combination, Tellervotrema katadara is also proposed. Key words: fi sh parasites, Digenea, deep-sea fi shes, the Pacifi c coast, Japan Introduction “Study on Deep-Sea Fauna and Conservation of Deep-Sea Ecosystem” organized by the Na- tional Museum of Nature and Science, Tokyo (NSMT) has been conducted since 1993. For dige- nean parasites of fi shes, Machida and Kamegai (1997) reported 22 species of fi sh digeneans, in- cluding two new species, from deep-sea fi shes caught in Suruga Bay, off the Pacifi c coast of central Japan, as the fi rst phase of the investigation, followed by Kuramochi (2001) which recorded 12 species from anguilliform and gadiform fi shes from deep-sea areas of Tosa Bay off the Pacifi c coast of western Japan as the second phase and by Kuramochi (2005) which recorded 14 species from fi shes caught in deep-sea area off the Ryukyu Islands, the East China Sea, southern Japan. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Fishes Collected During the 2017 Marinegeo Assessment of Kāne
Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.