Candy Carrot, Spignel and Matthiasella
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Status of the Umbelliferae Ssp. in Russia
Status of the Umbelliferae ssp. in Russia Tatiana Khmelinskaya Olga Zvereva Anna Artemyeva The collection status The formation of Russian Umbelliferae collection had begun in 1923 after N.I.Vavilov visit West-European countries, USA and Canada (1921- 1922), from the seed samples shipped by breeding companies of the United States, United Kingdom, France, Germany, Austria. Russian resources were registered in VIR collection through All-Russian agricultural exhibition. The local landraces were collected during collection missions in Afghanistan, Iran, Armenia, Uzbekistan, Turkey, etc. In 1926 VIR scientists started to study the collection. From 1928 the new expeditions were arranged to Mediterranean countries, Ethiopia, and Western China by Vavilov, to India by Markovich, to Minor Asia of Zhukovskiy, etc. , and also collection had started to grow by exchange of material with different Institutes and companies. Now VIR Genebank contains genetic resources of different status from more than 90 countries, includes wild species, landraces, old and advanced cultivars, hybrids F1, breeding materials . Umbelliferae collections are divided into two parts: constant (base) catalogue and temporary catalogue. The constant catalogue includes landraces and breeding cultivars with sufficient quantity of seeds in accession. All accessions of constant catalogue are documented for computerized passport data. The temporary catalogue includes the hybrids F1, breeding materials and the samples with insufficient quantity of seeds. These latter cultivars need to -
Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob. -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Barlow Herbal Specialties Is Proud to Carry on the Legacy of Our Father, Dr
Made with Love! Medicinal Herbal Products Barlow Herbal Specialties Barlow Herbal Specialties is proud to carry on the legacy of our father, Dr. Max G. Barlow. His herbal formulas are unique, powerful and life-giving. We work from his hand-written notes to make our extracts. They are concentrated and potent. Their extraordinary strengths are achieved without heat, pressure or other mechanical means, giving you strong, high quality extracts. Our formulas are made in small batches. They are concentrated and pure. No water, preservatives, additives or fillers. Every product does what it’s designed to do. Our goal is to educate you and empower you with simple, straightforward information. To allow you to take care of your family’s everyday health challenges the way Mother Nature intended. Barlow Herbal believes that living vibrantly healthy is our right as human beings and that we must be individually responsible for our own wellness. We look forward to sharing our wonderful formulas with you and helping you sow the seeds of natural healing. www.barlowherbal.com Toll free - 866-688-6757 Local - 801-816-9241 You and your health are a vital concern to us. We sincerely hope the information we share and the products that we make help to contribute to your physical health, well-being and prosperity. Please be aware none of these statements have been evaluated by the Food and Drug Administration (FDA). These products and this information are NOT intended to diagnose, treat, cure, or prevent any disease. It is simply the 1st Amendment in action and is presented for information and research purposes only. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil. -
Redacted for Privacy W
AN ABSTRACT OF THE THESIS OF Aaron D. Drew for the degree of Master of Science in Wildlife Science presented on December 19. 2000. Title: Effects of Livestock Grazing and Small Mammal Populations on Endangered Bradshaw's Desert Parsley (Lomatium bradshawii) at Oak Creek. Willamette Valley. Oregon. Abstract approved: Redacted for privacy W. Daniel I evaluated the response of the federally listed endangered plant species Bradshaw's desert parsley (Lomatium bradshawii) to livestock grazing and small mammal depredation at Oak Creek, Linn County, Oregon, 1997-1998. I established six study blocks (three each in wooded and herbaceous pastures) with plots in each block randomly assigned to one of four intensities of livestock grazing based on biomass remaining after grazing (no grazing [1,746 kg/ha], high biomass [969 kg/ha], moderate biomass [670 kg/ha], and light biomass [318 kg/ha]). Small mammals were live-trapped in each of the study blocks pre and post application of the livestock grazing treatments. I mapped and measured 2,807 Bradshaw's desert parsley plants (n1,366 in the wooded and n = 1,441 in the herbaceous pastures) over the two year period to determine changes in schizocarp production, morphological structure (conical surface area and height), population composition (plant stage), survival, emergence of new plants, and effects of small mammal herbivory pre and post application of livestock grazing. Grazing reductions in standing crop biomass appeared to have a positive effect on emergence of new Bradshaw's desert parsley plants, while having no detectible effect on total plant density or survival. Differences in total plant density, survival, schizocarp production, morphological structure, and population composition were related to pasture type. -
Nature Activities
NATURE ACTIVITIES These sheets have been produced by the Bohemia Walled Garden Association from activities done at the garden at events to prompt learning about nature through hands on experiences. There were several Natural History events in 2016 that were funded as part of the Heritage Lottery Fund. The grant has also funded the sheets to enable others to download them to engage other children. Unless stated otherwise the sheets are for children of primary school age. WILD FLOWER MOTH IDENTIFICATION WOODLAND IDENTIFICATION • Art Activity ANIMAL STORY • Art Activity • Templates ‘Badger Says ‘No’ to • Templates Rubbish in the Wood’ Summerfields Wood Trees KEY To St Pauls 1 = English Oak School 2 = Holm Oak Tree Stump 3 = Turkey Oak 4 = Beech 5 = Yew Houses 6 = Holly 7 = Sycamore 8 = Silver Birch Houses Law Courts BEWARE OF THE DROP! ! P O R D Prospect E H T Mound F Bohemia Walled Garden O E R A W E B To the Leisure Centre MAKE A GARDEN FOR SOIL pH & WORMS TREES BEES & BUTTERFLIES • Make a wormery • Tree Trail • Art Activity • Bug Hunt • Quiz: Clues & Answers • Templates • Measure Your Tree Design by Super8Design.com, Kristina Alexander • Content by Mary Dawson and Daniela Othieno bohemiawga.org.uk [email protected] ©Bohemia Walled Garden 2018 • Registered Charity 1167167 Nature Activities WILD FLOWER IDENTIFICATION Identify 3 flowers by making a picture from cut out shapes (templates given) • Dandelion • Red Campion • Creeping Buttercup Simple identification by shape of petals and leaves/number of petals/ root type Next stage example -
Major Lineages Within Apiaceae Subfamily Apioideae: a Comparison of Chloroplast Restriction Site and Dna Sequence Data1
American Journal of Botany 86(7): 1014±1026. 1999. MAJOR LINEAGES WITHIN APIACEAE SUBFAMILY APIOIDEAE: A COMPARISON OF CHLOROPLAST RESTRICTION SITE AND DNA SEQUENCE DATA1 GREGORY M. PLUNKETT2 AND STEPHEN R. DOWNIE Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 Traditional sources of taxonomic characters in the large and taxonomically complex subfamily Apioideae (Apiaceae) have been confounding and no classi®cation system of the subfamily has been widely accepted. A restriction site analysis of the chloroplast genome from 78 representatives of Apioideae and related groups provided a data matrix of 990 variable characters (750 of which were potentially parsimony-informative). A comparison of these data to that of three recent DNA sequencing studies of Apioideae (based on ITS, rpoCl intron, and matK sequences) shows that the restriction site analysis provides 2.6± 3.6 times more variable characters for a comparable group of taxa. Moreover, levels of divergence appear to be well suited to studies at the subfamilial and tribal levels of Apiaceae. Cladistic and phenetic analyses of the restriction site data yielded trees that are visually congruent to those derived from the other recent molecular studies. On the basis of these comparisons, six lineages and one paraphyletic grade are provisionally recognized as informal groups. These groups can serve as the starting point for future, more intensive studies of the subfamily. Key words: Apiaceae; Apioideae; chloroplast genome; restriction site analysis; Umbelliferae. Apioideae are the largest and best-known subfamily of tem, and biochemical characters exhibit similarly con- Apiaceae (5 Umbelliferae) and include many familiar ed- founding parallelisms (e.g., Bell, 1971; Harborne, 1971; ible plants (e.g., carrot, parsnips, parsley, celery, fennel, Nielsen, 1971). -
MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed. -
Evolutionary Shifts in Fruit Dispersal Syndromes in Apiaceae Tribe Scandiceae
Plant Systematics and Evolution (2019) 305:401–414 https://doi.org/10.1007/s00606-019-01579-1 ORIGINAL ARTICLE Evolutionary shifts in fruit dispersal syndromes in Apiaceae tribe Scandiceae Aneta Wojewódzka1,2 · Jakub Baczyński1 · Łukasz Banasiak1 · Stephen R. Downie3 · Agnieszka Czarnocka‑Cieciura1 · Michał Gierek1 · Kamil Frankiewicz1 · Krzysztof Spalik1 Received: 17 November 2018 / Accepted: 2 April 2019 / Published online: 2 May 2019 © The Author(s) 2019 Abstract Apiaceae tribe Scandiceae includes species with diverse fruits that depending upon their morphology are dispersed by gravity, carried away by wind, or transported attached to animal fur or feathers. This diversity is particularly evident in Scandiceae subtribe Daucinae, a group encompassing species with wings or spines developing on fruit secondary ribs. In this paper, we explore fruit evolution in 86 representatives of Scandiceae and outgroups to assess adaptive shifts related to the evolutionary switch between anemochory and epizoochory and to identify possible dispersal syndromes, i.e., patterns of covariation of morphological and life-history traits that are associated with a particular vector. We also assess the phylogenetic signal in fruit traits. Principal component analysis of 16 quantitative fruit characters and of plant height did not clearly separate spe- cies having diferent dispersal strategies as estimated based on fruit appendages. Only presumed anemochory was weakly associated with plant height and the fattening of mericarps with their accompanying anatomical changes. We conclude that in Scandiceae, there are no distinct dispersal syndromes, but a continuum of fruit morphologies relying on diferent dispersal vectors. Phylogenetic mapping of ten discrete fruit characters on trees inferred by nrDNA ITS and cpDNA sequence data revealed that all are homoplastic and of limited use for the delimitation of genera. -
In Vitro FREE-RADICAL SCAVENGING ACTIVITY of Aegopodium Podagraria L. and Orlaya Grandiflora (L.) Hoffm
Miglena Valyova,Journal Alexander of Chemical Tashev, Technology Stanimir Stoyanov, and Metallurgy, Stanislava 51, 3,Yordanova, 2016, 271-274 Yordanka Ganeva In vitro FREE-RADICAL SCAVENGING ACTIVITY OF Aegopodium podagraria L. AND Orlaya grandiflora (L.) Hoffm. (Apiaceae) Miglena Valyova1, Alexander Tashev1, Stanimir Stoyanov2, Stanislava Yordanova2, Yordanka Ganeva2 1 Faculty of Ecology and Landscape Architecture Received 30 June 2015 University of Forestry, 10 Kliment Ohridski Accepted 26 February 2016 1756 Sofia, Bulgaria 2 Faculty of Chemistry and Pharmacy Sofia University St. Kl.Ohridski 1 James Bourchier, 1164 Sofia, Bulgaria E-mail: [email protected] ABSTRACT The radical scavenging activity of extracts from Aegopodium podagraria L. and Orlaya grandiflora (L.) Hoffm. aerial parts was determined for the first time using 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in vitro assays. The IC50 values obtained measured the corresponding antioxidant potential. The ethanol extract of A. podagraria L. exhibited the highest antioxidant potential in both assays, -1 -1 DPPH (IC50 = 66.135±1.6 µg ml ) and ABTS (IC50= 73.9±8.7 µg ml ). Chloroform and ethyl acetate extracts of the plants investigated possessed a very weak radical scavenging activity. The findings of the present study suggest that ethanol extracts of A. podagraria L. and O. grandiflora (L.) Hoffm. can be used as a natural antioxidant source preventing free radicals provocated diseases. Keywords: Aegopodium podagraria L., Orlaya grandiflora (L.) Hoffm., radical scavenging activity. INTRODUCTION elder belongs to the family Apiaceae growing in Central, North and Southeastern Europe, Caucasus, Southwestern Reactive oxygen species (ROS) such as singlet Asia, Siberia.