SYNTHESIS of L-CHLORO-L,2,4,6-SELENATRIAZINES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Underactive Thyroid
Underactive Thyroid PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 21 Jun 2012 14:27:58 UTC Contents Articles Thyroid 1 Hypothyroidism 14 Nutrition 22 B vitamins 47 Vitamin E 53 Iodine 60 Selenium 75 Omega-6 fatty acid 90 Borage 94 Tyrosine 97 Phytotherapy 103 Fucus vesiculosus 107 Commiphora wightii 110 Nori 112 Desiccated thyroid extract 116 References Article Sources and Contributors 121 Image Sources, Licenses and Contributors 124 Article Licenses License 126 Thyroid 1 Thyroid thyroid Thyroid and parathyroid. Latin glandula thyroidea [1] Gray's subject #272 1269 System Endocrine system Precursor Thyroid diverticulum (an extension of endoderm into 2nd Branchial arch) [2] MeSH Thyroid+Gland [3] Dorlands/Elsevier Thyroid gland The thyroid gland or simply, the thyroid /ˈθaɪrɔɪd/, in vertebrate anatomy, is one of the largest endocrine glands. The thyroid gland is found in the neck, below the thyroid cartilage (which forms the laryngeal prominence, or "Adam's apple"). The isthmus (the bridge between the two lobes of the thyroid) is located inferior to the cricoid cartilage. The thyroid gland controls how quickly the body uses energy, makes proteins, and controls how sensitive the body is to other hormones. It participates in these processes by producing thyroid hormones, the principal ones being triiodothyronine (T ) and thyroxine which can sometimes be referred to as tetraiodothyronine (T ). These hormones 3 4 regulate the rate of metabolism and affect the growth and rate of function of many other systems in the body. T and 3 T are synthesized from both iodine and tyrosine. -
Small Reactive Sulfur-Nitrogen Compounds and Their Transition Metal Complexes
Comments on Inorganic Chemistry ISSN: 0260-3594 (Print) 1548-9574 (Online) Journal homepage: http://www.tandfonline.com/loi/gcic20 Small Reactive Sulfur-Nitrogen Compounds and Their Transition Metal Complexes Max Herberhold To cite this article: Max Herberhold (1988) Small Reactive Sulfur-Nitrogen Compounds and Their Transition Metal Complexes, Comments on Inorganic Chemistry, 7:2, 53-72, DOI: 10.1080/02603598808072300 To link to this article: http://dx.doi.org/10.1080/02603598808072300 Published online: 13 Dec 2006. Submit your article to this journal Article views: 14 View related articles Citing articles: 12 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gcic20 Download by: [CIS VSCHT Praha] Date: 25 January 2016, At: 05:09 Small Reactive Sulfur-Nitrogen Compounds and Their Transition Metal Complexes MAX HERBERHOLD Laboratorium fur Anorgankche Chemie der Universtitat Bayreuth, 0-8580 Bayreuth, Federal Republic of Germany Salts containing thiazyl (SN'), dithionitronium (S2N+) and sulfur diimide (SNZ,-) ions can be used as sources for these small sulfur-nitrogen units in synthetic studies. The highly reactive molecules sulfur nitride (SN) and dinitrogen sulfide (N=N=S) are known as transients in the gas phase, and the existence of anionic species such as the radical SN, or dithionitrite (S2N-) has been deduced from electrochemical studies. The thionitroysl group (NS) is a versatile three-electron acceptor system in transition metal complexes; it is generally coordinated as a linear terminal ligand. Key Words: sulfur-nitrogen compounds, thiazyl salts, sulfur diimides, sulfur nitrides, thionitrosyl complexes INTRODUCTION The generation and characterization of highly reactive molecules and ions is a challenge to both synthetic and structural chemistry. -
Cyclic and Heterocyclic Thiazenes
Progress in Inorganic Chenzistry; Volunze36 Edited by Stephen J. Lippard Copyright © 1988 by John Wiley & Sons, Inc. Cyclic and Heterocyclic Thiazenes RICHARD T. OAKLEY Department of Chemistry and Biochetnistrv. L1tiiver.sity of Guelph. Guelph. Oiitario. Canaclu COYIEN'I'S I . INTRODGCI'ION 300 301 A . Preparative Methods and Structural Diversity ........... 302 1 . Neutral Compounds ................... 301 2 . Binary Cations ..................... 306 3 . Hinary Anions ..................... 307 f3 . Elementary Chemistry ................... 308 1. Redox Reactions .................... 308 2 . Base Properties and Coordination Chemistry .......... 310 C . Electronic Structures .................... 312 1. The Hiickel Approximation and Electron-Rich Systems ...... 314 2 . Perturbation and Polarization of Electron-Rich 7i Systems ...... 31Y 3 . Xromaticity in Sulfur-Nitrogen Rings ............. 321 4 . Self-Consistent Field (SCF) Calculations ............ 323 5 . Electronic. MCD . and GV-Photoelectron Spectroscopy ....... 326 III . I IETEROCYCIK nmzmxs 328 A . Synthetic Routes to Organic Thiazencs .............329 1. Ring Closure Reactions with Silylated Sulfur Diimides ....... 330 2 . Thiazenes from Alkynes and 'Tetrasulfur 'lctranitride ....... 332 3 . ~l'hiazenesfrom Nitriles and 'l'hiazyl Halides .......... 333 3 . Thiazenes from Amidines and Related Compounds ........ 334 €3 . Synthetic Routes to Inorganic Thiazenes ............. 337 1 . Phosphorus-Containing Rings ................ 337 2 . Cyclic Sulfur-Nitrogen Oxides ............... 338 -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Durham E-Theses
Durham E-Theses Electrosynthetic and other studies of sulfur imides and aromatic thiazenes Clarke, H. G. How to cite: Clarke, H. G. (1974) Electrosynthetic and other studies of sulfur imides and aromatic thiazenes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8276/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk ELECTROSYNTHETIC AND OTHER STUDIES OF SULFUR IMIDES AND AROMATIC THIAZENES by H.e;. CLARKE, B.Sc. A thesis submitted for the degree of Doctor of Philosophy in the University of Durham September 1974 6 DEC 1974 HE0T10* LIBRA Acknowledgments The author wishes to express his gratitude to Sr. A.J. Banister, under whose supervision this research v/as carried out, for his unflagging enthusiasm, constant interest and valuable advice throughout the whole period of study. My thanks are also due to the Science Research Council and Staveley Chemicals Limited for providing a research grant, to the Senate of the University of Durham for research facilities, to many of the departments technical staff and to Dr. -
Chalogen-Nitrogen Chemistry.Pdf
FFIRS.qxd 6/16/04 8:37 AM Page iv Quark03 Quark03:Desktop Folder:Chapter-FM: Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. A GUIDE TO CHALCOGEN-NITROGEN CHEMISTRY Copyright © 2005 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 981-256-095-5 ISBN 981-256-133-1 (pbk) Printed in Singapore. FFIRS.qxd 6/16/04 8:37 AM Page iv Quark03 Quark03:Desktop Folder:Chapter-FM: Preface The quintessential chalcogen-nitrogen compound tetrasulfur tetranitride, S4N4, was first detected by Gregory in 1835 just ten years after the discovery of benzene. Its unusual structure, like that of benzene, was not elucidated for over 100 years. The application of diffraction techniques revealed the unusual cage arrangement with two weak cross-ring sulfur– sulfur interactions. The details of the electronic structure of this fascinating molecule are still a matter of debate today. -
Chapter 2. Selenium- and Tellurium-Halogen Reagents
Chapter 2. Selenium- and Tellurium-Halogen Reagents Tristram Chivers a and Risto S. Laitinen b a Department of Chemistry, University of Calgrary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 b Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland Table of Contents 2.1 Scope and Introduction 2.2 Binary Chalcogen-Halogen Reagents 2.2.1 Selenium Tetrahalides 2.2.2 Selenium Oxychloride 2.2.3 Selenium Dihalides 2.2.4 Selenium Dihalides 2.2.5 Mixtures of Selenium Halides 2.2.6 Tellurium Tetrahalides 2.2.7 Tellurium Tetrahalides and Ditellurium Dihalides 2.3 Organochalcogen-Halogen Reagents 2.3.1 Organoselenium and -tellurium Trihalides 2.3.2 Diorganoselenium and -tellurium Dihalides 2.3.3 Mixed-valent State Compounds RTeX2TeR 2.3.4 Organoselenium and -tellurium Monohalides 2.4 Conclusions 2.5 References 1 Abstract Selenium and tellurium form binary halides in which the chalcogen can be in formal oxidation states (IV), (II) or (I). They are versatile reagents for the preparation of a wide range of inorganic and organic selenium and tellurium compounds taking advantage of the reactivity of the chalcogen- halogen bond. With the exception of the tetrafluorides, the tetrahalides are either commercially available or readily prepared. On the other hand, the low-valent species, EX2 (E = Se, Te; X = Cl, Br) and E2X2 (E = Se, Te; X = Cl, Br) are unstable with respect to disproportionation and must be used as in situ reagents. Organoselenium and tellurium halides are well-known in oxidation states (IV) and (II), as exemplified by REX3, R2EX2, and REX (R = alkyl, aryl; E = Se, Te; X = F, Cl, Br, I), as well as mixed-valent (IV/II) compounds of the type RTeX2TeR are also known. -
Trihydrate, 99.9% (Metals Basis), Pt 45.2% Potassium Tetracyano
Product 유해물질명 010536 Potassium tetracyanoplatinate(II) trihydrate, 99.9% (metals basis), Pt 45.2% Potassium tetracyanoplatinate(II) trihydrate 010661 Cadmium chloride hydrate, Puratronic®, 99.998% (metals basis) Cadmium chloride hydrate 011138 Zinc sulfate hydrate, Puratronic®, 99.999% (metals basis) Zinc sulfate hydrate 011865 Cadmium acetate dihydrate, 99.999% (metals basis) Cadmium acetate dihydrate 012373 Cadmium chloride hemipentahydrate, ACS, 79.5-81.0% Cadmium chloride hemipentahydrate 012514 Nickel(II) sulfate hexahydrate, 98% Nickel(II) sulfate hexahydrate 012611 Sodium dichromate dihydrate, Reagent Grade Sodium dichromate dihydrate 014127 Zinc fluoride tetrahydrate, 98% Zinc fluoride tetrahydrate 014160 Zinc sulfate monohydrate, Zn 35.5% Zinc sulfate monohydrate 017553 Lead(II) trifluoroacetate hemihydrate Lead(II) trifluoroacetate hemihydrate 032958 Cadmium bromide tetrahydrate, Reagent Grade Cadmium bromide tetrahydrate 033373 Sodium hydrogen arsenate heptahydrate, ACS, 98.0-102.0% Sodium hydrogen arsenate heptahydrate 040503 Magnesium chromate hydrate, 99.8% (metals basis) Magnesium chromate hydrate 044230 Zinc bromide hydrate, 99.9% (metals basis) Zinc bromide hydrate 044315 Zinc perchlorate hexahydrate, 99.999% (metals basis) Zinc perchlorate hexahydrate 053108 Nickel tetrafluoroborate hexahydrate Nickel tetrafluoroborate hexahydrate 053130 Nickel(II) sulfate hexahydrate, 99.97% min (metals basis) Nickel(II) sulfate hexahydrate 087683 Sodium pentacyanonitrosylferrate(III) dihydrate, ACS, 99.0-102.0% Sodium pentacyanonitrosylferrate(III) -
Danh Mục Số Cas A
CÔNG TY CỔ PHẦN CÔNG NGHIỆP VIỆT XUÂN NHÀ CUNG CẤP KHÍ HELI, KHÍ METAN, KHÍ SF6, KHÍ PROPAN Số 80B Nguyễn Văn Cừ - Long Biên - Hà Nội - Việt Nam www.vietxuangas.com. -
Chemical Contaminants 201 Continuing Education Professional Development Course
CHEMICAL CONTAMINANTS 201 CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 2 Chemical Contaminants 201 1st Edition TLC (928) 468-0665 Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat reader. Adobe Acrobat reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. Internet Link to Assignment… http://www.abctlc.com/PDF/CC201ASS.pdf State Approval Listing Link, check to see if your State accepts or has pre- approved this course. Not all States are listed. Not all courses are listed. Do not solely trust our list for it may be outdated. It is your sole responsibility to ensure this course is accepted for credit. No refunds. Professional Engineers; Most states will accept our courses for credit but we do not officially list the States or Agencies acceptance or approvals. State Approval Listing URL… http://www.tlch2o.com/PDF/CEU%20State%20Approvals.pdf You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes.