Node Architecture and Performance Evaluation of the Hitachi Super Technical Server SR8000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xinya (Leah) Zhao Abdulahi Abu Outline
K-Computer Xinya (Leah) Zhao Abdulahi Abu Outline • History of Supercomputing • K-Computer Architecture • Programming Environment • Performance Evaluation • What's next? Timeline of Supercomputing Control Data The Cray era Massive Processing Petaflop Computing Corporation (1960s) (mid-1970s - 1980s) (1990s) (21st century) • CDC 1604 (1960): First • 80 MHz Cray-1 (1976): • Hitachi SR2201 (1996): • Realization: Power of solid state The most successful used 2048 processors large number of small • CDC 6600 (1964): 100 supercomputers in history connected via a fast three processors can be computers were sold at $8 • Vector processor dimensioanl corssbar harnessed to achieve high million each • Introduced chaining in network performance • Gained speed by "farming which scalar and vector • ASCI Red: mesh-based • IBM Blue Gene out" work to peripheral registers generate interim MIMD massively parallel architecture: trades computing elements, results system with over 9,000 processor speed for low freeing the CPU to • The Cray-2 (1985): No compute nodes and well power consumption, so a process actual data chaning and high memory over 12 terabytes of disk large number of • STAR-100: First to use latency with deep storage processors can be used at vector processing pipelinging • ASCI Red was the first air cooled temperature ever to break through the • K computer (2011) : 1 teraflop barrier fastest in the world K Computer is #1 !!! Why K Computer? Purpose: • Perform extremely complex mathematical or scientific calculations (ex: modelling the changes -
Recent Supercomputing Development in Japan
Supercomputing in Japan Yoshio Oyanagi Dean, Faculty of Information Science Kogakuin University 2006/4/24 1 Generations • Primordial Ages (1970’s) – Cray-1, 75APU, IAP • 1st Generation (1H of 1980’s) – Cyber205, XMP, S810, VP200, SX-2 • 2nd Generation (2H of 1980’s) – YMP, ETA-10, S820, VP2600, SX-3, nCUBE, CM-1 • 3rd Generation (1H of 1990’s) – C90, T3D, Cray-3, S3800, VPP500, SX-4, SP-1/2, CM-5, KSR2 (HPC ventures went out) • 4th Generation (2H of 1990’s) – T90, T3E, SV1, SP-3, Starfire, VPP300/700/5000, SX-5, SR2201/8000, ASCI(Red, Blue) • 5th Generation (1H of 2000’s) – ASCI,TeraGrid,BlueGene/L,X1, Origin,Power4/5, ES, SX- 6/7/8, PP HPC2500, SR11000, …. 2006/4/24 2 Primordial Ages (1970’s) 1974 DAP, BSP and HEP started 1975 ILLIAC IV becomes operational 1976 Cray-1 delivered to LANL 80MHz, 160MF 1976 FPS AP-120B delivered 1977 FACOM230-75 APU 22MF 1978 HITAC M-180 IAP 1978 PAX project started (Hoshino and Kawai) 1979 HEP operational as a single processor 1979 HITAC M-200H IAP 48MF 1982 NEC ACOS-1000 IAP 28MF 1982 HITAC M280H IAP 67MF 2006/4/24 3 Characteristics of Japanese SC’s 1. Manufactured by main-frame vendors with semiconductor facilities (not ventures) 2. Vector processors are attached to mainframes 3. HITAC IAP a) memory-to-memory b) summation, inner product and 1st order recurrence can be vectorized c) vectorization of loops with IF’s (M280) 4. No high performance parallel machines 2006/4/24 4 1st Generation (1H of 1980’s) 1981 FPS-164 (64 bits) 1981 CDC Cyber 205 400MF 1982 Cray XMP-2 Steve Chen 630MF 1982 Cosmic Cube in Caltech, Alliant FX/8 delivered, HEP installed 1983 HITAC S-810/20 630MF 1983 FACOM VP-200 570MF 1983 Encore, Sequent and TMC founded, ETA span off from CDC 2006/4/24 5 1st Generation (1H of 1980’s) (continued) 1984 Multiflow founded 1984 Cray XMP-4 1260MF 1984 PAX-64J completed (Tsukuba) 1985 NEC SX-2 1300MF 1985 FPS-264 1985 Convex C1 1985 Cray-2 1952MF 1985 Intel iPSC/1, T414, NCUBE/1, Stellar, Ardent… 1985 FACOM VP-400 1140MF 1986 CM-1 shipped, FPS T-series (max 1TF!!) 2006/4/24 6 Characteristics of Japanese SC in the 1st G. -
Hronologija Izračunavanja Π Prije 1400
Hronologija izračunavanja π Prije 1400 Decimalna mjesta Datum Ko Formulacija Vrijednost π (svijetski rekord podebljan) 2000? 2 Stari Egipćani 3.16045... 1 BCЕ 4 × (8 / 9) 2000? Babilonci 3 + 1 / 8 3.125 1 BCЕ 1200? Kina 3 0 BCЕ 550? Biblija "...rastopljeno more, deset lakata od jednog kraja do 3 0 BCЕ (1 Kraljevi 7:23) drugog: bilo je sveobuhvatno, ... linija od trideset lakata ga je obuhvatila u cijelosti..." Prvi Helen koji se 434 Anaksagora nije dao nikakvo bavio kvadraturom Kompas i lenjir 0 BCE rešenje kruga je Anaksagora Sulbasutras, 350? (6/(2 + 2 )) 3.088311 … 0 BCЕ indijski sveti tekst 2 √ c. 250 223 / 71 < π < 22 / 7 3.140845...<π< 3.142857... 2 BCE Arhimed 15 25 / 8 3.125 1 BCE Marko Vitruvije 5 Liu Xin Tačna metoda je nepoznata 3.1457 2 130 Zhang Heng 10 = 3.162277…. 3.146551... 2 730/232 √ 150 Ptolomej 377 / 120 3.141666... 3 250 Wang Fan 142 / 45 3.155555... 1 3.141024 < π < 3.142074 263 Liu Hui 3927 / 1250 3.14159 5 400 He Chengtia 111035 / 35329 3.142885... 2 3.1415926 < π < 3.1415927 Zuov 480 Zu Chongzhi odnos 355 / 113 3.1415926 7 499 Aryabhata 62832 / 20000 3.1416 3 640 Brahmagupta 10 3.162277... 1 800 Al Khwarizmi 3.1416 3 √ 1150 Bhāskara II 3927/1250 i 754/240 3.1416 3 1220 Fibonači 3.141818 3 1320 Zhao Youqin 3.1415926 7 Od 1400 pa nadalje Decimalna mjesta (svijetski Datum Ko Bilješka rekord podebljan) Svizapisiod1400.godinenavodetačanbrojdecimalnihmesta. Madhava Vjerovatno je otkrivena pomoću beskonačnog reda π. -
ACM SIGARCH Order # Is 415972. IEEE Computer Society Press Order # Is RS00160
ACM SIGARCH Order # is 415972. IEEE Computer Society Press Order # is RS00160. ISBN: 0-89791-985-8 Copies may be ordered from ACM Member Services: 1-800-342-6626 (U.S. and Canada) +1 212-626-0500 (Global) +1 212-944-1318 (Fax) Email: [email protected] Online: http://www.acm.org/catalog The SC97 Technical Program, presented Tuesday through Friday, November 18-21, includes both plenary and parallel sessions. The parallel sessions have been organized to ensure that topics of interest to a wide range of audiences are available during these times. The parallel tracks are divided into two components as follows: Presentations by authors of contributed papers. These represent the very best papers submitted to the conference. Each has been through a competitive peer review process and has been selected as an outstanding contribution. There will be a total of 57 technical papers presented at SC97. Topics of general interest in a wide variety of areas. Sessions will include invited talks on a variety of subjects, presented by an impressive array of experts, as well as panel discussions that are sure to engage attendees' interest. Tuesday, November 18 -- 10:30am-noon [Room B1] Communication in Clusters Session Chair: David Culler, University of California, Berkeley 1. The Effects of Communication Parameters on End Performance of Shared Virtual Memory Clusters Angelos Bilas, Jaswinder Pal Singh, Princeton University 2. FM-QoS: Real-time Communication Using Self-synchronizing Schedules Kay H. Connelly, Andrew A. Chien, University of Illinois at Urbana-Champaign 3. Multi-protocol Active Messages on a Cluster of SMPs Steven S. -
Recent Supercomputing Development in Japan
Development of Supercomputers in Japan --From the Numerical Wind Tunnel to Fugaku-- Yoshio Oyanagi Science Advisor, RIST Kobe Center (高度情報科学技術研究機構) 2019/9/5 KSC 2019 1 How computers started in Japan PREHISTORY 2019/9/5 KSC 2019 2 “Computers” before WWII • Many Powers/Hollerith Punch Card Systems have been introduced to Japan since 1923 • The first one in universities: IBM Punch Card Systems in Kobe Univ. in 1941 • Since no PCS could be imported during WWII, Japan tried to copy the machine. • The next slide shows computer history exhibit of Kobe Univ. RIEB (Res. Inst. for Economics and Business Administration) . 2019/9/5 KSC 2019 3 2019/9/5 KSC 2019 4 Universities in 1950’s and 1960’s • Big computers were too expensive to buy with ordinary budget (we were poor, then!) • Some universities introduced small computers • Some universities developed computers by themselves – TAC 1952-1959 Univ. of Tokyo (Eng.) (with Toshiba) V – (no name) 1953-unfinished Osaka Univ. V – PC-1 1956- 1958 Univ. of Tokyo (Sci.) P – KDC-1 1958-1960 Kyoto Univ. (with Hitachi) T – SENAC-1 1956-1958 Tohoku Univ. (with NEC) P – K-1 1958-1960 Keio Univ. T • Those computers were open to teachers and students in the campus and were heavily used 2019/9/5 KSC 2019 5 PC-1 in Univ. of Tokyo (hand made) 2019/9/5 KSC 2019 6 Authorized Computer Centers • 1963/5/13 Recommendation of Science Council of Japan • 1963/7 Budget Proposal from Univ. of Tokyo • 1964/3 Accepted by government • Finalist computers were: – Hitachi HITAC 5020 (under development) – IBM 7094 II (popular but out-of-date) – CDC 3600 (new in Japan) • 1964/5 Committee selected HITAC 5020 – Rejected American computers 2019/9/5 KSC 2019 7 Computer Center, Univ. -
Information Technology Center, the University of Tokyo
Nationwide Joint-use Facility Information Technology Center, The University of Tokyo 東京大学情報基盤センター Greetings The Information Technology Center (ITC) of The University of Tokyo has been providing its service on the nation-wide basis as well as the university-wide basis. The service is roughly divided into 4 categories: (1) ultra-high performance computing, (2) campus networking, (3) educational computing, (4) digital library service. Some details of each service category can be found in the web pages of the corresponding divisions. What we would like to emphasize in each web page is that our first priority is to provide better service to a wider range of users, compared with the previous years. The ultra-high performance division had been designing a new supercomputing system of massively parallel type, in cooperation with the ITCs of Kyoto University and Tsukuba University. The design called "T2K Open Supercomputer" was completed more than a year ago and the designed machine became operational in June this year. We expect that this machine will keep the highest performance rank in the nation for the next few years. Our intention of introducing this type of machine is not only to highly accelerate the development of computational science and engineering, but also to enlarge a new class of supercomputer users in number and depth. Our ITC has about 30 researchers and faculties in the four divisions and they are all working for research, development and education as well as social contributions. These activities are also reported in the web pages and the ITC's annual report. October, 2008 Akinori Yonezawa Director, Information Technology Center ■History Computer Centre Educational Computer Center University Library Apr 1965:Established as a facility open to May 1972:Established as a facility open to Oct 1877: Creation of the University Library all scholars in Japan University of Tokyo scholars Jun 1986: Online Public Access Catalog Oct 1983:Vector Supercomputer launched Apr 1987:Information science education (OPAC) service started Mar 1990:Univ. -
Parallel Machines
Lecture 6 Parallel Machines A parallel computer is a connected configuration of processors and memories. The choice space available to a computer architect includes the network topology, the node processor, the address- space organization, and the memory structure. These choices are based on the parallel computation model, the current technology, and marketing decisions. No matter what the pace of change, it is impossible to make intelligent decisions about parallel computers right now without some knowledge of their architecture. For more advanced treatment of computer architecture we recommend Kai Hwang's Advanced Computer Architecture and Parallel Computer Architecture by Gupta, Singh, and Culler. One may gauge what architectures are important today by the Top500 Supercomputer1 list published by Meuer, Strohmaier, Dongarra and Simon. The secret is to learn to read between the lines. There are three kinds of machines on The November 2003 Top 500 list: Distributed Memory Multicomputers (MPPs) • Constellation of Symmetric Multiprocessors (SMPs) • Clusters (NOWs and Beowulf cluster) • Vector Supercomputers, Single Instruction Multiple Data (SIMD) Machines and SMPs are no longer present on the list but used to be important in previous versions. How can one simplify (and maybe grossly oversimplify) the current situation? Perhaps by pointing out that the world's fastest machines are mostly clusters. Perhaps it will be helpful to the reader to list some of the most important machines first sorted by type, and then by highest rank in the top 500 -
CPU Design HOW-TO CPU Design HOW-TO Table of Contents CPU Design HOW-TO
CPU Design HOW-TO CPU Design HOW-TO Table of Contents CPU Design HOW-TO.......................................................................................................................................1 Al Dev (Alavoor Vasudevan) alavoor[AT]yahoo.com............................................................................1 1. Introduction..........................................................................................................................................1 2. What is IP ?..........................................................................................................................................1 2.1 Free CPU List...................................................................................................................................2 2.2 Commercial CPU List.......................................................................................................................2 3. CPU Museum and Silicon Zoo............................................................................................................3 3.1 CPU Museum....................................................................................................................................4 3.2 How Transistors work.......................................................................................................................4 3.3 How a Transistors handles information............................................................................................4 3.4 Displaying binary information..........................................................................................................4 -
Cloud Computing Contents
Cloud Computing Contents 1 Cloud computing 1 1.1 Overview ............................................... 1 1.2 History of cloud computing ...................................... 1 1.2.1 Origin of the term ....................................... 1 1.2.2 The 1950s ........................................... 2 1.2.3 The 1990s ........................................... 2 1.3 Similar concepts ............................................ 2 1.4 Characteristics ............................................. 3 1.5 Service models ............................................ 4 1.5.1 Infrastructure as a service (IaaS) ............................... 5 1.5.2 Platform as a service (PaaS) ................................. 5 1.5.3 Software as a service (SaaS) ................................. 5 1.6 Cloud clients .............................................. 5 1.7 Deployment models .......................................... 6 1.7.1 Private cloud ......................................... 6 1.7.2 Public cloud .......................................... 6 1.7.3 Hybrid cloud ......................................... 6 1.7.4 Others ............................................. 7 1.8 Architecture .............................................. 7 1.8.1 Cloud engineering ....................................... 7 1.9 Security and privacy .......................................... 7 1.10 The future ............................................... 8 1.11 See also ................................................ 8 1.12 References ..............................................