Floor Management Systems to Reduce Vineyard Inputs and Improve Grape Quality

Total Page:16

File Type:pdf, Size:1020Kb

Floor Management Systems to Reduce Vineyard Inputs and Improve Grape Quality Floor Management Systems to Reduce Vineyard Inputs and Improve grape quality FINAL REPORT Grape and Wine Research and Development Corporation Project Number: CSU01/01 Principal Investigator: Dr Ron Hutton Research Organisation: National Wine & Grape Industry Centre (NSW Department of Primary Industries and Charles Sturt University, Wagga Wagga) Date: July 2006 ISBN 0 7247 1750 4 Floor Management Systems to Reduce Vineyard Inputs and Improve grape quality Authors Simon Clarke NSW Department of Primary Industries, Private Mail Bag, Wagga Wagga NSW 2650 Neil Coombes NSW Department of Primary Industries, Private Mail Bag, Wagga Wagga NSW 2650 Joanne Holloway NSW Department of Primary Industries, Private Mail Bag, Wagga Wagga NSW 2650 Ron Hutton National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Deirdre Lemerle NSW Department of Primary Industries, Private Mail Bag, Wagga Wagga NSW 2650 Andrew Loch National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Michel Meunier National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Loothfar Rahman National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Emily Rouse National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Rhonda Smith National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Mark Stevens NSW Department of Primary Industries, Private Mail Bag, Yanco NSW 2703 Dejan Tesic National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 Melanie Weckert National Wine and Grape Industry Centre, Locked Bag 588, Charles Sturt University, Wagga Wagga NSW 2678 July 2006 1 Disclaimer This document has been prepared by the author for the National Wine & Grape Industry Centre (NSW Department of Primary Industries and Charles Sturt University), for and on behalf of the State of New South Wales, in good faith on the basis of available information. While the information contained in the document has been prepared with all due care, the users of the document must obtain their own advice and conduct their own investigations and assessments of any proposals they are considering, in the light of their own individual circumstances. The document is made available on the understanding that the State of New South Wales, the author and the publisher, their respective servants and agents accept no responsibility for any person, acting on, or relying on, or upon any opinion, advice, representation, statement or information whether expressed or implied in the document, and disclaim all liability for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information contained in the document or by reason of any error, omission, defect or mis- statement (whether such error, omission or mis-statement is caused by or arises from negligence, lack of care or otherwise). Whilst the information is considered true and consistent at the date of publication, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the State of New South Wales, the author and the publisher and their respective servants and agents are not in any way liable for the accuracy of information contained in this document. 2 Acknowledgements This study was supported by Australia’s grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. Andrew Smith, Leo Quirk, Robert Lamont and Sylvie Sicard are thanked for their valuable technical assistance in the field and laboratory. We are grateful to the CSU Winery managers Andrew Drumm and Greg Gallagher and Mannus Wine Estates former manager Mark Verheyden for allowing access to their vineyards. Many thanks to Ms Janet Wild of New South Wales Department of Natural Resources for providing her soil profile report. Mark Conyers (NSW DPI) contributed valuable advice regarding soil chemical aspects of the project. Research on beneficial insect diversity was supported by a Charles Sturt University Faculty of Science and Agriculture Seed Grant. Eric Koetz and Andrew Smith are thanked for providing technical assistance on the plant species diversity studies. John Blackman is thanked for his contribution to the wine sensory appraisal, as well as Mr Grant Johnson from the Environmental and Analytical Laboratories for his support in Nitrogen analysis. 3 4 Table of Contents Abstract ...................................................................................................................................... 9 Executive Summary ................................................................................................................. 11 1. Introduction ...................................................................................................................... 15 1.1 Background .............................................................................................................. 15 1.2 Defining sustainable agriculture / viticulture production systems........................... 16 1.3 Soil and sustainable viticulture ................................................................................ 17 1.3.1 Soil health......................................................................................................... 17 1.3.2 Soil biological resilience .................................................................................. 18 1.3.3 Indicators of soil health and resilience............................................................. 19 1.4 The soil biological environment............................................................................... 20 1.4.1 Organic matter.................................................................................................. 20 1.4.2 Microbial biomass............................................................................................ 20 1.4.3 Soil biodiversity............................................................................................... 21 1.4.4 The microbial buffer and pathogen suppression .............................................. 23 1.4.5 Beneficial organisms........................................................................................ 24 1.4.6 Cover cropping and the soil ............................................................................. 24 1.5 Insect biodiversity and biological control ................................................................ 25 1.6 Defining a sustainable vineyard ............................................................................... 25 1.7 Towards optimising vineyard biodiversity............................................................... 27 1.8 Diversity Indices...................................................................................................... 34 1.9 Preliminary and Previous Research.......................................................................... 35 1.10 Proposed R & D Program......................................................................................... 39 1.11 Objectives................................................................................................................. 39 1.12 References ................................................................................................................ 41 2. General Materials and Methods (Site description, treatments, trial design, management operations and measurements) ......................................................................................... 59 2.1 Vineyard sites........................................................................................................... 59 2.2 Floor management treatments .................................................................................. 61 2.3 Herbicide applications.............................................................................................. 62 2.4 Soil water measurements.......................................................................................... 63 2.5 Soil Analyses............................................................................................................ 64 2.6 Vine performance measurements............................................................................. 64 2.7 Soil Microbial Analyses........................................................................................... 65 2.8 Arthropod Analyses.................................................................................................. 65 2.9 Botanical Analyses................................................................................................... 66 2.10 Statistical Analyses .................................................................................................. 66 3. Vineyard floor management practices affect grapevine vegetative growth, yield and fruit composition ...................................................................................................................... 67 3.1 Abstract .................................................................................................................... 67 3.2 Introduction .............................................................................................................. 67 3.3 Materials
Recommended publications
  • Bias in the Effect of Habitat Structure on Pitfall Traps: an Experimental Evaluation
    Australian Journal of Ecology (1999) 24, 228–239 Bias in the effect of habitat structure on pitfall traps: An experimental evaluation BRETT A. MELBOURNE Division of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia ([email protected]) Abstract Habitat structure has been implicated as a source of bias for pitfall-trap data but most evidence is observational or anecdotal. This study used an experimental approach to quantify biases due to habitat structure. In a randomized block design, I manipulated native grassland to create three types of habitat structure and measured pitfall-trap catches of grassland ants. Small patches of modified habitat were surrounded by otherwise unmodified grassland with the assumption that population density remained unaffected by the modification and that the effects observed were due to changes in trappability. I assessed magnitude, direction, predictability, and consistency of bias for the following types of data: population abundance for single species, relative abundance among species, species composition of assemblages, and species richness. The magnitude of the bias in population abundance was large for most species. However, since the direction of the bias varied predictably with habitat structure, pitfall- trap data can be used to judge differences in population abundance in some situations. The magnitude of the bias in relative abundance was less than for abundance. However, there was inconsistency in the direction and magnitude of bias among species. Thus, interpretation of relative abundance data in pitfall-trap studies may be compromised. Species richness and species composition were biased by habitat structure but were affected significantly only when the groundcover was very dense, suggesting a threshold effect of habitat structure.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • 1. Padil Species Factsheet Scientific Name: Common Name Image
    1. PaDIL Species Factsheet Scientific Name: Phalaenoides glycinae Lewin (Lepidoptera: Noctuidae: Agaristinae) Common Name grapevine moth Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136336 Image Library Australian Biosecurity Live link: http://www.padil.gov.au/pests-and-diseases/ Partners for Australian Biosecurity image library Department of Agriculture, Water and the Environment https://www.awe.gov.au/ Department of Primary Industries and Regional Development, Western Australia https://dpird.wa.gov.au/ Plant Health Australia https://www.planthealthaustralia.com.au/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Walker, K. Citation: Walker, K. (2007) grapevine moth(Phalaenoides glycinae)Updated on 1/4/2011 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pests-and-diseases/Pest/Main/136336 2.3. Facets Status: Native Australian Pest Species Group: Moths Commodity Overview: Horticulture Commodity Type: Ornamentals, Leaves, Viticulture Distribution: Australasian - Oceanian 2.4. Diagnostic Notes Adult forewing span 40-50mm; forewings black with cream markings, hindwings black; abdomen black with orange stripes on the underside. 2.5. Web Links CSIRO Australian Moths Online: http://www.ento.csiro.au/gallery/moths/Phalaenoidesglycinae Fact sheet: http://www.faunanet.gov.au/wos/factfile.cfm?Fact_ID=209 3. Diagnostic Images Australia: Victoria, Moe, Dec 1944, C. Australia: Victoria, Melbourne Gooding Dorsal view - male: Lucinda Gibson & Ken Dorsal view - female: Lucinda Gibson & Ken Walker Museums Victoria Walker Museums Victoria Australia: Victoria, Moe, Dec 1944, C.
    [Show full text]
  • Biological Control of the Native Shrubs Cassinia Spp. Using the Native Scale Insects Austrotachardia Sp. and Paratachardina
    64 Plant Protection Quarterly VoI.9(2) 1994 similar scales were described by Froggatt Biological control of the native shrubs Cassinia spp. (1903), no data on their biology were available. Thus observations began on using the native scale insects Austrotachardia sp. and Austrotachardia sp. in 1988 and Para­ Paratachardina sp. (Hemiptera: Kerriidae) in New tachardina sp. in 1991 to record their biol­ ogy and to ascertain whether they could South Wales be used for the biological control of Cassinia spp. M.H. Campbell', R.H. Holtkamp', L.H. McCormick', P.J. Wykes', J.F. Donaldson', P.J. Gulian' and P.S. Gillespie'. Life cycle of Austrotachardia sp. and Para tach ardin a sp. Austrotachardia sp. was s tudied at 1 NSW Agriculture, Agricultural Research and Veterinary Centre, Forest "0aydawn", Kerrs Creek and at the Agri­ Road, Orange, New South Wales 2800, Australia. cultural Research and Veterinary Centre, ' NSW Agriculture, Agricultural Research Centre, Tamworth, New South Orange. Paratachardina sp. was studied in Wales 2340, Australia. the Tamworth and Manilla districts. ' NSW Agriculture, Manilla, New South Wales 2346, Australia. Fi rs t-instar nymphs (crawlers) of • "Daydawn", Kerrs Creek, New South Wales 2741, Australia. Austrotachardia sp. (Figure 1) (orange in ' Department of Primary Industries, lndooroopilly, Queensland 4068, colour and 0.5 mm long) emerged in De­ Australia. cember 1990 and established on stems of ' Division of Botany and Zoology, Australian National University, Canberra, C. arcuata. Initially, all second-instar ACT 2600, Australia. nymphs appeared identical. However, by February 1991, the red, oblong (1.5 x 0.6 ' Biological and Chemical Research Institute, Rydalmere, New South Wales mm) male tests were distinguishable 2116, Australia.
    [Show full text]
  • TAXON:Epilobium Billardierianum SCORE:7.0 RATING:High Risk
    TAXON: Epilobium billardierianum SCORE: 7.0 RATING: High Risk Taxon: Epilobium billardierianum Family: Onagraceae Common Name(s): Aboriginal willowherb Synonym(s): E. b. subsp. cinereum (A. Rich.) Raven & Engelhorn smooth willow herb E. cinereum A. Rich. variable willow herb E. junceum G. Forster ex Spreng. var. cinereum (A . Rich.) T. Kirk Assessor: Chuck Chimera Status: Assessor Approved End Date: 18 Nov 2015 WRA Score: 7.0 Designation: H(Hawai'i) Rating: High Risk Keywords: Perennial Herb, Naturalized, Weedy, Palatable, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Intermediate tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix
    [Show full text]
  • 1 © Australian Museum. This Material May Not Be Reproduced, Distributed
    AMS564/002 – Scott sister’s second notebook, 1840-1862 © Australian Museum. This material may not be reproduced, distributed, transmitted, cached or otherwise used without permission from the Australian Museum. Text was transcribed by volunteers at the Biodiversity Volunteer Portal, a collaboration between the Australian Museum and the Atlas of Living Australia This is a formatted version of the transcript file from the second Scott Sisters’ notebook Page numbers in this document do not correspond to the notebook page numbers. The notebook was started from both ends at different times, so the transcript pages have been shuffled into approximately date order. Text in square brackets may indicate the following: - Misspellings, with the correct spelling in square brackets preceded by an asterisk rendersveu*[rendezvous] - Tags for types of content [newspaper cutting] - Spelled out abbreviations or short form words F[ield[. Nat[uralists] 1 AMS564/002 – Scott sister’s second notebook, 1840-1862 [Front cover] nulie(?) [start of page 130] [Scott Sisters’ page 169] Note Book No 2 Continued from first notebook No. 253. Larva (Noctua /Bombyx Festiva , Don n 2) found on the Crinum - 16 April 1840. Length 2 1/2 Incs. Ground color ^ very light blue, with numerous dark longitudinal stripes. 3 bright yellow bands, one on each side and one down the middle back - Head lightish red - a black velvet band, transverse, on the segment behind the front legs - but broken by the yellows This larva had a very offensive smell, and its habits were disgusting - living in the stem or in the thick part of the leaves near it, in considerable numbers, & surrounded by their accumulated filth - so that any touch of the Larva would soil the fingers.- It chiefly eat the thicker & juicier parts of the Crinum - On the 17 April made a very slight nest, underground, & some amongst the filth & leaves, by forming a cavity with agglutinated earth - This larva is showy - Drawing of exact size & appearance.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Bauxite Mining Restoration with Natural Soils and Residue Sands: Comparison of the Recovery of Soil Ecosystem Function and Ground-Dwelling Invertebrate Diversity
    School of Molecular and Life Sciences Bauxite Mining Restoration with Natural Soils and Residue Sands: Comparison of the Recovery of Soil Ecosystem Function and Ground-dwelling Invertebrate Diversity Dilanka Madusani Mihindukulasooriya Weerasinghe This thesis is presented for the Degree of Doctor of Philosophy of Curtin University May 2019 Author’s Declaration To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material that has been accepted for the award of any other degree or diploma in any university. Signature………………………………………………… Date………………………………………………………... iii Statement of authors’ contributions Experimental set up, data collection, data analysis and data interpretation for Chapter 2, 3,4 and 5 was done by D. Mihindukulasooriya. Experimental set up established by Lythe et al. (2017) used for experimental chapter 6. Data collection, data analysis and data interpretation for long term effect of woody debris addition was done by D. Mihindukulasooriya. iv Abstract Human destruction of the natural environment has been identified as a global problem that has triggered the loss of biodiversity. This degradation and loss has altered ecosystem processes and the resilience of ecosystems to environmental changes. Restoration of degraded habitats forms a significant component of conservation efforts. Open cut mining is one activity that can dramatically alter local communities, and successful vascular plant restoration does not necessarily result in restoration of other components of flora and fauna or result in a fully functioning ecosystem. Therefore, restoration studies should focus on improving ecological functions such as nutrient cycling and litter decomposition, seed dispersal and/ or pollination, and assess community composition beyond vegetation to attain fully functioning systems.
    [Show full text]
  • The Little Things That Run the City How Do Melbourne’S Green Spaces Support Insect Biodiversity and Promote Ecosystem Health?
    The Little Things that Run the City How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Luis Mata, Christopher D. Ives, Georgia E. Garrard, Ascelin Gordon, Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk, Kirsten Parris and Sarah A. Bekessy The Little Things that Run the City – How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Report prepared for the City of Melbourne, November 2015 Coordinating authors Luis Mata Christopher D. Ives Georgia E. Garrard Ascelin Gordon Sarah Bekessy Interdisciplinary Conservation Science Research Group Centre for Urban Research School of Global, Urban and Social Studies RMIT University 124 La Trobe Street Melbourne 3000 Contributing authors Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk and Kirsten Parris. Cover artwork by Kate Cranney ‘Melbourne in a Minute Scavenger’ (Ink and paper on paper, 2015) This artwork is a little tribute to a minute beetle. We found the brown minute scavenger beetle (Corticaria sp.) at so many survey plots for the Little Things that Run the City project that we dubbed the species ‘Old Faithful’. I’ve recreated the map of the City of Melbourne within the beetle’s body. Can you trace the outline of Port Phillip Bay? Can you recognise the shape of your suburb? Next time you’re walking in a park or garden in the City of Melbourne, keep a keen eye out for this ubiquitous little beetle.
    [Show full text]
  • Management Options for Mealybug in Persimmon
    Scoping study: management options for mealybug in persimmon Dr Lara Senior The Department of Agriculture, Fisheries and Forestry, QLD Project Number: PR11000 PR11000 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the persimmon industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the persimmon industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 3021 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2012 Scoping study: management options for mealybug in persimmon (FINAL REPORT) Project Number: PR11000 (1st December 2012) Dr Lara Senior Queensland Department of Agriculture, Fisheries and Forestry Scoping study: management options for mealybug in persimmon HAL Project Number: PR11000 1st December 2012 Project leader: Dr Lara Senior Entomologist Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Gatton Research Station Locked Bag 7, Mail Service 437 Gatton, QLD 4343 Tel: 07 5466 2222 Fax: 07 5462 3223 Email: [email protected] Key personnel: Grant Bignell1, Bob Nissen2, Greg Baker3 1. 1 Department of Agriculture, Fisheries and Forestry, Nambour Qld 2.
    [Show full text]
  • The Impact of Silicon Fertilisation on the Chemical Ecology of Grapevine
    The impact of silicon fertilisation on the chemical ecology of grapevine, Vitis vinifera; constitutive and induced chemical defences against arthropod pests and their natural enemies Vanessa J. Connick A thesis submitted in fulfilment of the requirements for the degree of Master of Philosophy Faculty of Science School of Agriculture and Wine Sciences July 2011 1 Table of Contents Certificate of Authorship ............................................................................. 7 Certificate of Authorship ............................................................................. 7 Acknowledgements ....................................................................................... 8 Editorial Note ............................................................................................. 11 Publications associated with this thesis .................................................... 12 Abbreviations used in this thesis ............................................................... 13 Abstract ....................................................................................................... 14 Chapter 1 Literature Review .................................................................. 21 1.1 Introduction ................................................................................... 22 1.2 Chemical ecology of silicon–plant interactions ............................ 26 1.2.1 Silicon and soil ......................................................................... 26 1.2.2 Silicon and water .....................................................................
    [Show full text]